Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 236 results
1.

OptoAssay-Light-controlled dynamic bioassay using optogenetic switches.

red PhyB/PIF6 in vitro Extracellular optogenetics
Sci Adv, 25 Sep 2024 DOI: 10.1126/sciadv.adp0911 Link to full text
Abstract: Circumventing the limitations of current bioassays, we introduce a light-controlled assay, OptoAssay, toward wash- and pump-free point-of-care diagnostics. Extending the capabilities of standard bioassays with light-dependent and reversible interaction of optogenetic switches, OptoAssays enable a bidirectional movement of assay components, only by changing the wavelength of light. Demonstrating exceptional versatility, the OptoAssay showcases its efficacy on various substrates, delivering a dynamic bioassay format. The applicability of the OptoAssay is successfully demonstrated by the calibration of a competitive model assay, resulting in a superior limit of detection of 8 pg ml-1, which is beyond those of conventional ELISA tests. In the future, combined with smartphones, OptoAssays could obviate the need for external flow control systems such as pumps or valves and signal readout devices, enabling on-site analysis in resource-limited settings.
2.

Local optogenetic NMYII activation within the zebrafish neural rod results in long-range, asymmetric force propagation.

red PhyB/PIF6 zebrafish in vivo Signaling cascade control Control of cytoskeleton / cell motility / cell shape
bioRxiv, 19 Sep 2024 DOI: 10.1101/2024.09.19.613826 Link to full text
Abstract: How do cellular forces propagate through tissue to allow large-scale morphogenetic events? To investigate this question, we use an in vivo optogenetic approach to reversibly manipulate actomyosin contractility at depth within the developing zebrafish neural rod. Contractility was induced along the lateral cortices of a small patch of developing neural epithelial progenitor cells, resulting in a shortening of these cells along their mediolateral axis. Imaging the immediate response of surrounding tissue uncovered a long-range, tangential, and elastic tissue deformation along the anterior-posterior axis. Unexpectedly, this was highly asymmetric, propagating in either the anterior or the posterior direction in response to local gradients in optogenetic activation. The degree of epithelialisation did not have a significant impact on the extent of force propagation via lateral cortices. We also uncovered a dynamic oscillatory expansion and contraction of the tissue along the anterior-posterior axis, with wavelength matching rhombomere length. Together, this study suggests dynamic and wave-like propagation of force between rhombomeres along the anterior-posterior axis. It also suggests that cell generated forces are actively propagated over long distances within the tissue, and that local anisotropies in tissue organisation and contractility may be sufficient to drive directional force propagation.
3.

Plant Phytochrome Interactions Decode Light and Temperature Signals.

red Phytochromes A. thaliana leaf protoplasts CHO-K1 in vitro Background
Plant Cell, 11 Sep 2024 DOI: 10.1093/plcell/koae249 Link to full text
Abstract: Plant phytochromes perceive red and far-red light to elicit adaptations to the changing environment. Downstream physiological responses revolve around red-light-induced interactions with phytochrome-interacting factors (PIF). Phytochromes double as thermoreceptors, owing to the pronounced temperature dependence of thermal reversion from the light-adapted Pfr to the dark-adapted Pr state. Here, we assess whether thermoreception may extend to the phytochrome:PIF interactions. While the association between Arabidopsis (Arabidopsis thaliana) PHYTOCHROME B (PhyB) and several PHYTOCHROME-INTERACTING FACTOR (PIF) variants moderately accelerates with temperature, the dissociation does more so, thus causing net destabilization of the phytochrome:PIF complex. Markedly different temperature profiles of PIF3 and PIF6 might underlie stratified temperature responses in plants. Accidentally, we identify a photoreception mechanism under strong continuous light, where the extent of phytochrome:PIF complexation decreases with red-light intensity rather than increases. Mathematical modeling rationalizes this attenuation mechanism and ties it to rapid red-light-driven Pr⇄Pfr interconversion and complex dissociation out of Pr. Varying phytochrome abundance, e.g., during diurnal and developmental cycles, and interaction dynamics, e.g., across different PIFs, modify the nature and extent of attenuation, thus permitting light-response profiles more malleable than possible for the phytochrome Pr⇄Pfr interconversion alone. Our data and analyses reveal a photoreception mechanism with implications for plant physiology, optogenetics, and biotechnological applications.
4.

Integrating bioprinting and optogenetic technologies for precision plant tissue engineering.

blue green red Cobalamin-binding domains LOV domains Phytochromes Review
Curr Opin Biotechnol, 28 Aug 2024 DOI: 10.1016/j.copbio.2024.103193 Link to full text
Abstract: Recent advancements in plant bioprinting and optogenetic tools have unlocked new avenues to revolutionize plant tissue engineering. Bioprinting of plant cells has the potential to craft intricate 3D structures incorporating multiple cell types, replicating the complex microenvironments found in plants. Concurrently, optogenetic tools enable the control of biological events with spatial, temporal, and quantitative precision. Originally developed for human and microbial systems, these two cutting-edge methodologies are now being adapted for plant research. Although still in the early stages of development, we here review the latest progress in plant bioprinting and optogenetics and discuss compelling opportunities for plant biotechnology and research arising from the combination of the two technologies.
5.

Cryo-EM structures of a bathy phytochrome histidine kinase reveal a unique light-dependent activation mechanism.

red Phytochromes Background
Structure, 23 Aug 2024 DOI: 10.1016/j.str.2024.08.008 Link to full text
Abstract: Phytochromes are photoreceptor proteins in plants, fungi, and bacteria. They can adopt two photochromic states with differential biochemical responses. The structural changes transducing the signal from the chromophore to the biochemical output modules are poorly understood due to challenges in capturing structures of the dynamic, full-length protein. Here, we present cryoelectron microscopy (cryo-EM) structures of the phytochrome from Pseudomonas aeruginosa (PaBphP) in its resting (Pfr) and photoactivated (Pr) state. The kinase-active Pr state has an asymmetric, dimeric structure, whereas the kinase-inactive Pfr state opens up. This behavior is different from other known phytochromes and we explain it with the unusually short connection between the photosensory and output modules. Multiple sequence alignment of this region suggests evolutionary optimization for different modes of signal transduction in sensor proteins. The results establish a new mechanism for light-sensing by phytochrome histidine kinases and provide input for the design of optogenetic phytochrome variants.
6.

Programming mammalian cell behaviors by physical cues.

blue cyan green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Trends Biotechnol, 22 Aug 2024 DOI: 10.1016/j.tibtech.2024.07.014 Link to full text
Abstract: In recent decades, the field of synthetic biology has witnessed remarkable progress, driving advances in both research and practical applications. One pivotal area of development involves the design of transgene switches capable of precisely regulating specified outputs and controlling cell behaviors in response to physical cues, which encompass light, magnetic fields, temperature, mechanical forces, ultrasound, and electricity. In this review, we delve into the cutting-edge progress made in the field of physically controlled protein expression in engineered mammalian cells, exploring the diverse genetic tools and synthetic strategies available for engineering targeting cells to sense these physical cues and generate the desired outputs accordingly. We discuss the precision and efficiency limitations inherent in these tools, while also highlighting their immense potential for therapeutic applications.
7.

Genetic code expansion, click chemistry, and light-activated PI3K reveal details of membrane protein trafficking downstream of receptor tyrosine kinases.

red PhyB/PIF6 F-11 HEK293T/17 NIH/3T3 Signaling cascade control
Elife, 20 Aug 2024 DOI: 10.7554/elife.91012.3 Link to full text
Abstract: Ligands such as insulin, epidermal growth factor, platelet-derived growth factor, and nerve growth factor (NGF) initiate signals at the cell membrane by binding to receptor tyrosine kinases (RTKs). Along with G-protein-coupled receptors, RTKs are the main platforms for transducing extracellular signals into intracellular signals. Studying RTK signaling has been a challenge, however, due to the multiple signaling pathways to which RTKs typically are coupled, including MAP/ERK, PLCγ, and Class 1A phosphoinositide 3-kinases (PI3K). The multi-pronged RTK signaling has been a barrier to isolating the effects of any one downstream pathway. Here, we used optogenetic activation of PI3K to decouple its activation from other RTK signaling pathways. In this context, we used genetic code expansion to introduce a click chemistry noncanonical amino acid into the extracellular side of membrane proteins. Applying a cell-impermeant click chemistry fluorophore allowed us to visualize delivery of membrane proteins to the plasma membrane in real time. Using these approaches, we demonstrate that activation of PI3K, without activating other pathways downstream of RTK signaling, is sufficient to traffic the TRPV1 ion channels and insulin receptors to the plasma membrane.
8.

Ultrafast Primary Dynamics and Isomerization Mechanism of a Far-Red Sensing Cyanobacteriochrome.

red Phytochromes Background
J Phys Chem Lett, 8 May 2024 DOI: 10.1021/acs.jpclett.4c00468 Link to full text
Abstract: Far-red cyanobacteriochromes (CBCRs) are bilin-based photosensory proteins that promise to be novel optical agents in optogenetics and deep tissue imaging. Recent structural studies of a far-red CBCR 2551g3 have revealed a unique all-Z,syn chromophore conformation in the far-red-absorbing Pfr state. Understanding the photoswitching mechanism through bilin photoisomerization is important for developing novel biomedical applications. Here, we employ femtosecond spectroscopy and site-directed mutagenesis to systematically characterize the dynamics of wild-type 2551g3 and four critical mutants in the 15Z Pfr state. We captured local relaxations in several picoseconds and isomerization dynamics in hundreds of picoseconds. Most mutants exhibited faster local relaxation, while their twisting dynamics and photoproducts depend on specific protein-chromophore interactions around the D-ring and C-ring. These results collectively reveal a unique dynamic pattern of excited-state evolution arising from a relatively rigid protein environment, thereby elucidating the molecular mechanism of Pfr-state photoisomerization in far-red CBCRs.
9.

An Optimized Genotyping Workflow for Identifying Highly SCRaMbLEd Synthetic Yeasts.

red PhyB/PIF3 S. cerevisiae Nucleic acid editing
ACS Synth Biol, 10 Apr 2024 DOI: 10.1021/acssynbio.3c00476 Link to full text
Abstract: Synthetic Sc2.0 yeast strains contain hundreds to thousands of loxPsym recombination sites that allow restructuring of the Saccharomyces cerevisiae genome by SCRaMbLE. Thus, a highly diverse yeast population can arise from a single genotype. The selection of genetically diverse candidates with rearranged synthetic chromosomes for downstream analysis requires an efficient and straightforward workflow. Here we present loxTags, a set of qPCR primers for genotyping across loxPsym sites to detect not only deletions but also inversions and translocations after SCRaMbLE. To cope with the large number of amplicons, we generated qTagGer, a qPCR genotyping primer prediction tool. Using loxTag-based genotyping and long-read sequencing, we show that light-inducible Cre recombinase L-SCRaMbLE can efficiently generate diverse recombination events when applied to Sc2.0 strains containing a linear or a circular version of synthetic chromosome III.
10.

Lighting the way: recent developments and applications in molecular optogenetics.

blue green red Cryptochromes LOV domains Phytochromes Review
Curr Opin Biotechnol, 29 Mar 2024 DOI: 10.1016/j.copbio.2024.103126 Link to full text
Abstract: Molecular optogenetics utilizes genetically encoded, light-responsive protein switches to control the function of molecular processes. Over the last two years, there have been notable advances in the development of novel optogenetic switches, their utilization in elucidating intricate signaling pathways, and their progress toward practical applications in biotechnological processes, material sciences, and therapeutic applications. In this review, we discuss these areas, offer insights into recent developments, and contemplate future directions.
11.

Optical Control over Liquid–Liquid Phase Separation.

blue red BLUF domains Cryptochromes LOV domains Phytochromes Review
Small Methods, 26 Mar 2024 DOI: 10.1002/smtd.202301724 Link to full text
Abstract: Liquid-liquid phase separation (LLPS) is responsible for the emergence of intracellular membrane-less organelles and the development of coacervate protocells. Benefitting from the advantages of simplicity, precision, programmability, and noninvasiveness, light has become an effective tool to regulate the assembly dynamics of LLPS, and mediate various biochemical processes associated with LLPS. In this review, recent advances in optically controlling membrane-less organelles within living organisms are summarized, thereby modulating a series of biological processes including irreversible protein aggregation pathologies, transcription activation, metabolic flux, genomic rearrangements, and enzymatic reactions. Among these, the intracellular systems (i.e., optoDroplet, Corelet, PixELL, CasDrop, and other optogenetic systems) that enable the photo-mediated control over biomolecular condensation are highlighted. The design of photoactive complex coacervate protocells in laboratory settings by utilizing photochromic molecules such as azobenzene and diarylethene is further discussed. This review is expected to provide in-depth insights into phase separation-associated biochemical processes, bio-metabolism, and diseases.
12.

Synthetic Biology Meets Ca2+ Release-Activated Ca2+ Channel-Dependent Immunomodulation.

blue red iLID Cryptochromes LOV domains Phytochromes Review
Cells, 7 Mar 2024 DOI: 10.3390/cells13060468 Link to full text
Abstract: Many essential biological processes are triggered by the proximity of molecules. Meanwhile, diverse approaches in synthetic biology, such as new biological parts or engineered cells, have opened up avenues to precisely control the proximity of molecules and eventually downstream signaling processes. This also applies to a main Ca2+ entry pathway into the cell, the so-called Ca2+ release-activated Ca2+ (CRAC) channel. CRAC channels are among other channels are essential in the immune response and are activated by receptor-ligand binding at the cell membrane. The latter initiates a signaling cascade within the cell, which finally triggers the coupling of the two key molecular components of the CRAC channel, namely the stromal interaction molecule, STIM, in the ER membrane and the plasma membrane Ca2+ ion channel, Orai. Ca2+ entry, established via STIM/Orai coupling, is essential for various immune cell functions, including cytokine release, proliferation, and cytotoxicity. In this review, we summarize the tools of synthetic biology that have been used so far to achieve precise control over the CRAC channel pathway and thus over downstream signaling events related to the immune response.
13.

Light-directed evolution of dynamic, multi-state, and computational protein functionalities.

blue red EL222 PhyB/PIF3 S. cerevisiae Cell cycle control Transgene expression
bioRxiv, 2 Mar 2024 DOI: 10.1101/2024.02.28.582517 Link to full text
Abstract: Directed evolution is a powerful method in biological engineering. Current approaches were devised for evolving steady-state properties such as enzymatic activity or fluorescence intensity. A fundamental problem remains how to evolve dynamic, multi-state, or computational functionalities, e.g., folding times, on-off kinetics, state-specific activity, stimulus-responsiveness, or switching and logic capabilities. These require applying selection pressure on all of the states of a protein of interest (POI) and the transitions between them. We realized that optogenetics and cell cycle oscillations could be leveraged for a novel directed evolution paradigm (‘optovolution’) that is germane for this need: We designed a signaling cascade in budding yeast where optogenetic input switches the POI between off (0) and on (1) states. In turn, the POI controls a Cdk1 cyclin, which in the re-engineered cell cycle system is essential for one cell cycle stage but poisonous for another. Thus, the cyclin must oscillate (1-0-1-0…) for cell proliferation. In this system, evolution can act efficiently on the dynamics, transient states, and input-output relations of the POI in every cell cycle. Further, controlling the pacemaker, light, directs and tunes selection pressures. Optovolution is in vivo, continuous, self-selecting, and genetically robust. We first evolved two optogenetic systems, which relay 0/1 input to 0/1 output: We obtained 25 new variants of the widely used LOV transcription factor El222. These mutants were stronger, less leaky, or green- and red-responsive. The latter was conjectured to be impossible for LOV domains but is needed for multiplexing and lowering phototoxicity. Evolving the PhyB-Pif3 optogenetic system, we discovered that loss of YOR1 makes supplementing the expensive and unstable chromophore phycocyanobilin (PCB) unnecessary. Finally, we demonstrate the generality of the method by creating and evolving a destabilized rtTA transcription factor, which performs an AND operation between transcriptional and doxycycline input. Optovolution makes coveted, difficult-to-change protein functionalities evolvable.
14.

Light-Guided Rabies Virus Tracing for Neural Circuit Analysis.

red PhyB/PIF3 rat cortical neurons Transgene expression
bioRxiv, 23 Feb 2024 DOI: 10.1101/2023.03.04.531104 Link to full text
Abstract: Neuronal tracing methods are essential tools to understand the fundamental architecture of neural circuits and their connection to the overall functional behavior of the brain. Viral vectors used to map these transsynaptic connections are capable of cell-type-specific and directional-specific labeling of the neuronal connections. Herein, we describe a novel approach to guide the transsynaptic spreading of the Rabies Virus (RV) retrograde tracer using light. We built a Baculovirus (BV) as a helper virus to deliver all the functional components necessary and sufficient for a nontoxic RV to spread from neuron to neuron, with a light-actuated gene switch to control the RV polymerase, the L gene. This design should allow for precisely controlled polysynaptic viral tracing with minimal viral toxicity. To use this system in a highly scalable and automated manner, we built optoelectronics for controlling this system in vitro with a large field of view using an off-the-shelf CMOS sensor, OLED display panel, and microcontrollers. We describe the assembly of these genetic circuits using the uLoop DNA assembly method and a library of genetic parts designed for the uLoop system. Combining these tools provides a framework for increasing the capabilities of nontoxic tracing through multiple synapses and increasing the throughput of neural tracing using viruses.
15.

OptoREACT: Optogenetic Receptor Activation on Nonengineered Human T Cells.

red PhyB/PIF6 HEK293T human T cells Jurkat Signaling cascade control Extracellular optogenetics
ACS Synth Biol, 9 Feb 2024 DOI: 10.1021/acssynbio.3c00518 Link to full text
Abstract: Optogenetics is a versatile and powerful tool for the control and analysis of cellular signaling processes. The activation of cellular receptors by light using optogenetic switches usually requires genetic manipulation of cells. However, this considerably limits the application in primary, nonengineered cells, which is crucial for the study of physiological signaling processes and for controlling cell fate and function for therapeutic purposes. To overcome this limitation, we developed a system for the light-dependent extracellular activation of cell surface receptors of nonengineered cells termed OptoREACT (Optogenetic Receptor Activation) based on the light-dependent protein interaction of A. thaliana phytochrome B (PhyB) with PIF6. In the OptoREACT system, a PIF6-coupled antibody fragment binds the T cell receptor (TCR) of Jurkat or primary human T cells, which upon illumination is bound by clustered phytochrome B to induce receptor oligomerization and activation. For clustering of PhyB, we either used tetramerization by streptavidin or immobilized PhyB on the surface of cells to emulate the interaction of a T cell with an antigen-presenting cell. We anticipate that this extracellular optogenetic approach will be applicable for the light-controlled activation of further cell surface receptors in primary, nonengineered cells for versatile applications in fundamental and applied research.
16.

Correction to: Increased RTN3 phenocopies nonalcoholic fatty liver disease by inhibiting the AMPK-IDH2 pathway.

blue green near-infrared red UV violet Cryptochromes LOV domains Phytochromes UV receptors Review
MedComm (2020), 4 Feb 2024 DOI: 10.1002/smmd.20230026 Link to full text
Abstract: [This corrects the article DOI: 10.1002/mco2.226.].
17.

Crucial Residue for Tuning Thermal Relaxation Kinetics in the Biliverdin-binding Cyanobacteriochrome Photoreceptor Revealed by Site-saturation Mutagenesis.

red Phytochromes Background
J Mol Biol, 19 Jan 2024 DOI: 10.1016/j.jmb.2024.168451 Link to full text
Abstract: Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors distantly related to the phytochromes sensing red and far-red light reversibly. Only the cGMP phosphodiesterase/Adenylate cyclase/FhlA (GAF) domain is needed for chromophore incorporation and proper photoconversion. The CBCR GAF domains covalently ligate linear tetrapyrrole chromophores and show reversible photoconversion between two light-absorbing states. In most cases, the two light-absorbing states are stable under dark conditions, but in some cases, the photoproduct state undergoes thermal relaxation back to the dark-adapted state during thermal relaxation. In this study, we examined the engineered CBCR GAF domain, AnPixJg2_BV4. AnPixJg2_BV4 covalently binds biliverdin IX-alpha (BV) and shows reversible photoconversion between a far-red-absorbing Pfr dark-adapted state and an orange-absorbing Po photoproduct state. Because the BV is an intrinsic chromophore of mammalian cells and absorbs far-red light penetrating into deep tissues, BV-binding CBCR molecules are useful for the development of optogenetic and bioimaging tools used in mammals. To obtain a better developmental platform molecule, we performed site-saturation random mutagenesis on the Phe319 position. We succeeded in obtaining variant molecules with higher chromophore-binding efficiency and higher molar extinction coefficient. Furthermore, we observed a wide variation in thermal relaxation kinetics, with an 81-fold difference between the slowest and fastest rates. Both molecules with relatively slow and fast thermal relaxation would be advantageous for optogenetic control.
18.

Direct investigation of cell contraction signal networks by light-based perturbation methods.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Pflugers Arch, 18 Oct 2023 DOI: 10.1007/s00424-023-02864-2 Link to full text
Abstract: Cell contraction plays an important role in many physiological and pathophysiological processes. This includes functions in skeletal, heart, and smooth muscle cells, which lead to highly coordinated contractions of multicellular assemblies, and functions in non-muscle cells, which are often highly localized in subcellular regions and transient in time. While the regulatory processes that control cell contraction in muscle cells are well understood, much less is known about cell contraction in non-muscle cells. In this review, we focus on the mechanisms that control cell contraction in space and time in non-muscle cells, and how they can be investigated by light-based methods. The review particularly focusses on signal networks and cytoskeletal components that together control subcellular contraction patterns to perform functions on the level of cells and tissues, such as directional migration and multicellular rearrangements during development. Key features of light-based methods that enable highly local and fast perturbations are highlighted, and how experimental strategies can capitalize on these features to uncover causal relationships in the complex signal networks that control cell contraction.
19.

Engineering of an Optogenetic T Cell Receptor Compatible with Fluorescence-Based Readouts.

red PhyB/PIF6 Jurkat Signaling cascade control
ACS Synth Biol, 2 Oct 2023 DOI: 10.1021/acssynbio.3c00429 Link to full text
Abstract: Optogenetics offers a set of tools for the precise manipulation of signaling pathways. Here we exploit optogenetics to experimentally change the kinetics of protein-protein interactions on demand. We had developed a system in which the interaction of a modified T cell receptor (TCR) with an engineered ligand can be controlled by light. The ligand was the plant photoreceptor phytochrome B (PhyB) and the TCR included a TCRβ chain fused to GFP and a mutated PhyB-interacting factor (PIFS), resulting in the GFP-PIFS-TCR. We failed to engineer a nonfluorescent PIFS-fused TCR, since PIFS did not bind to PhyB when omitting GFP. Here we tested nine different versions of PIFS-fused TCRs. We found that the SNAP-PIFS-TCR was expressed well on the surface, bound to PhyB, and subsequently elicited activation signals. This receptor could be combined with a GFP reporter system in which the expression of GFP is driven by the transcription factor NF-AT.
20.

Light-inducible T cell engagers trigger, tune, and shape the activation of primary T cells.

red PhyB/PIF6 human T cells Signaling cascade control Extracellular optogenetics
Proc Natl Acad Sci U S A, 18 Sep 2023 DOI: 10.1073/pnas.2302500120 Link to full text
Abstract: To mount appropriate responses, T cells integrate complex sequences of receptor stimuli perceived during transient interactions with antigen-presenting cells. Although it has been hypothesized that the dynamics of these interactions influence the outcome of T cell activation, methodological limitations have hindered its formal demonstration. Here, we have engineered the Light-inducible T cell engager (LiTE) system, a recombinant optogenetics-based molecular tool targeting the T cell receptor (TCR). The LiTE system constitutes a reversible molecular switch displaying exquisite reactivity. As proof of concept, we dissect how specific temporal patterns of TCR stimulation shape T cell activation. We established that CD4+ T cells respond to intermittent TCR stimulation more efficiently than their CD8+ T cells counterparts and provide evidence that distinct sequences of TCR stimulation encode different cytokine programs. Finally, we show that the LiTE system could be exploited to create light-activated bispecific T cell engagers and manipulate tumor cell killing. Overall, the LiTE system provides opportunities to understand how T cells integrate TCR stimulations and to trigger T cell cytotoxicity with high spatiotemporal control.
21.

Quantitative insights in tissue growth and morphogenesis with optogenetics.

blue cyan red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Phys Biol, 7 Sep 2023 DOI: 10.1088/1478-3975/acf7a1 Link to full text
Abstract: Cells communicate with each other to jointly regulate cellular processes during cellular differentiation and tissue morphogenesis. This multiscale coordination arises through spatiotemporal activity of morphogens to pattern cell signaling and transcriptional factor activity. This coded information controls cell mechanics, proliferation, and differentiation to shape the growth and morphogenesis of organs. While many of the molecular components and physical interactions have been identified in key model developmental systems, there are still many unresolved questions related to the dynamics involved due to challenges in precisely perturbing and quantitatively measuring signaling dynamics. Recently, a broad range of synthetic optogenetic tools have been developed and employed to quantitatively define relationships between signal transduction and downstream cellular responses. These optogenetic tools can control intracellular activities at the single cell or whole tissue scale to direct subsequent biological processes. In this brief review, we highlight a selected set of studies that develop and implement optogenetic tools to unravel quantitative biophysical mechanisms for tissue growth and morphogenesis across a broad range of biological systems through the manipulation of morphogens, signal transduction cascades, and cell mechanics. More generally, we discuss how optogenetic tools have emerged as a powerful platform for probing and controlling multicellular development.
22.

Design principles for engineering light-controlled antibodies.

blue red Cryptochromes LOV domains Phytochromes Review
Trends Biotechnol, 26 Jul 2023 DOI: 10.1016/j.tibtech.2023.06.006 Link to full text
Abstract: Engineered antibodies are essential tools for research and advanced pharmacy. In the development of therapeutics, antibodies are excellent candidates as they offer both target recognition and modulation. Thanks to the latest advances in biotechnology, light-activated antibody fragments can be constructed to control spontaneous antigen interaction with high spatiotemporal precision. To implement conditional antigen binding, several optogenetic and optochemical engineering concepts have recently been developed. Here, we highlight the various strategies and discuss the features of opto-conditional antibodies. Each concept offers intrinsic advantages beneficial to different applications. In summary, the novel design approaches constitute a complementary toolset to promote current and upcoming antibody technologies with ultimate precision.
23.

A biological camera that captures and stores images directly into DNA.

blue red PhyB/PIF3 VVD E. coli Nucleic acid editing Multichromatic
Nat Commun, 3 Jul 2023 DOI: 10.1038/s41467-023-38876-w Link to full text
Abstract: The increasing integration between biological and digital interfaces has led to heightened interest in utilizing biological materials to store digital data, with the most promising one involving the storage of data within defined sequences of DNA that are created by de novo DNA synthesis. However, there is a lack of methods that can obviate the need for de novo DNA synthesis, which tends to be costly and inefficient. Here, in this work, we detail a method of capturing 2-dimensional light patterns into DNA, by utilizing optogenetic circuits to record light exposure into DNA, encoding spatial locations with barcoding, and retrieving stored images via high-throughput next-generation sequencing. We demonstrate the encoding of multiple images into DNA, totaling 1152 bits, selective image retrieval, as well as robustness to drying, heat and UV. We also demonstrate successful multiplexing using multiple wavelengths of light, capturing 2 different images simultaneously using red and blue light. This work thus establishes a 'living digital camera', paving the way towards integrating biological systems with digital devices.
24.

Multidimensional characterization of inducible promoters and a highly light-sensitive LOV-transcription factor.

blue red EL222 PhyB/PIF3 S. cerevisiae Transgene expression
Nat Commun, 27 Jun 2023 DOI: 10.1038/s41467-023-38959-8 Link to full text
Abstract: The ability to independently control the expression of different genes is important for quantitative biology. Using budding yeast, we characterize GAL1pr, GALL, MET3pr, CUP1pr, PHO5pr, tetOpr, terminator-tetOpr, Z3EV, blue-light inducible optogenetic systems El222-LIP, El222-GLIP, and red-light inducible PhyB-PIF3. We report kinetic parameters, noise scaling, impact on growth, and the fundamental leakiness of each system using an intuitive unit, maxGAL1. We uncover disadvantages of widely used tools, e.g., nonmonotonic activity of MET3pr and GALL, slow off kinetics of the doxycycline- and estradiol-inducible systems tetOpr and Z3EV, and high variability of PHO5pr and red-light activated PhyB-PIF3 system. We introduce two previously uncharacterized systems: strongLOV, a more light-sensitive El222 mutant, and ARG3pr, which is induced in the absence of arginine or presence of methionine. To demonstrate fine control over gene circuits, we experimentally tune the time between cell cycle Start and mitosis, artificially simulating near-wild-type timing. All strains, constructs, code, and data ( https://promoter-benchmark.epfl.ch/ ) are made available.
25.

A Photoreceptor-Based Hydrogel with Red Light-Responsive Reversible Sol-Gel Transition as Transient Cellular Matrix.

red PhyB/PIF6 in vitro Extracellular optogenetics
Adv Mater Technol, 18 Jun 2023 DOI: 10.1002/admt.202300195 Link to full text
Abstract: Hydrogels with adjustable mechanical properties have been engineered as matrices for mammalian cells and allow the dynamic, mechano-responsive manipulation of cell fate and function. Recent research yields hydrogels, where biological photoreceptors translated optical signals into a reversible and adjustable change in hydrogel mechanics. While their initial application provides important insights into mechanobiology, broader implementation is limited by a small dynamic range of addressable stiffness. Herein, this limitation is overcome by developing a photoreceptor-based hydrogel with reversibly adjustable stiffness from ≈800 Pa to the sol state. The hydrogel is based on star-shaped polyethylene glycol, functionalized with the red/far-red light photoreceptor phytochrome B (PhyB), or phytochrome-interacting factor 6 (PIF6). Upon illumination with red light, PhyB heterodimerizes with PIF6, thus crosslinking the polymers and resulting in gelation. However, upon illumination with far-red light, the proteins dissociate and trigger a complete gel-to-sol transition. The hydrogel's light-responsive mechanical properties are comprehensively characterized and it is applied as a reversible extracellular matrix for the spatiotemporally controlled deposition of mammalian cells within a microfluidic chip. It is anticipated that this technology will open new avenues for the site- and time-specific positioning of cells and will contribute to overcome spatial restrictions.
Submit a new publication to our database