Showing 1 - 25 of 40 results
1.
Programming mammalian cell behaviors by physical cues.
Abstract:
In recent decades, the field of synthetic biology has witnessed remarkable progress, driving advances in both research and practical applications. One pivotal area of development involves the design of transgene switches capable of precisely regulating specified outputs and controlling cell behaviors in response to physical cues, which encompass light, magnetic fields, temperature, mechanical forces, ultrasound, and electricity. In this review, we delve into the cutting-edge progress made in the field of physically controlled protein expression in engineered mammalian cells, exploring the diverse genetic tools and synthetic strategies available for engineering targeting cells to sense these physical cues and generate the desired outputs accordingly. We discuss the precision and efficiency limitations inherent in these tools, while also highlighting their immense potential for therapeutic applications.
2.
A modular strategy for extracellular vesicle-mediated CRISPR-Cas9 delivery through aptamer-based loading and UV-activated cargo release.
-
Elsharkasy, OM
-
Hegeman, CV
-
Lansweers, I
-
Cotugno, OL
-
de Groot, IY
-
de Wit, ZEMNJ
-
Liang, X
-
Garcia-Guerra, A
-
Moorman, NJA
-
Lefferts, J
-
de Voogt, WS
-
Gitz-Francois, JJ
-
van Wesel, ACW
-
El Andaloussi, S
-
Schiffelers, RM
-
Kooijmans, SAA
-
Mastrobattista, E
-
Vader, P
-
de Jong, OG
Abstract:
CRISPR-Cas9 gene editing technology offers the potential to permanently repair genes containing pathological mutations. However, efficient intracellular delivery of the Cas9 ribonucleoprotein complex remains one of the major hurdles in its therapeutic application. Extracellular vesicles (EVs) are biological nanosized membrane vesicles released by cells, that play an important role in intercellular communication. Due to their innate capability of intercellular transfer of proteins, RNA, and various other biological cargos, EVs have emerged as a novel promising strategy for the delivery of macromolecular biotherapeutics, including CRISPR-Cas9 ribonucleoproteins. Here, we present a versatile, modular strategy for the loading and delivery of Cas9. We leverage the high affinity binding of MS2 coat proteins (MCPs) fused to EV-enriched proteins to MS2 aptamers incorporated into single guide RNAs (sgRNAs), in combination with a UV-activated photocleavable linker domain, PhoCl. Combined with the Vesicular stomatitis virus G (VSV-G) protein this modular platform enables efficient loading and subsequent delivery of the Cas9 ribonucleoprotein complex, which shows critical dependence on the incorporation and activation of the photocleavable linker domain. As this approach does not require any direct fusion of Cas9 to EV-enriched proteins, we demonstrate that Cas9 can readily be exchanged for other variants, including transcriptional activator dCas9-VPR and adenine base editor ABE8e, as confirmed by various sensitive fluorescent reporter assays. Taken together, we describe a robust and modular strategy for successful Cas9 delivery, which can be applied for CRISPR-Cas9-based genetic engineering as well as transcriptional regulation, underlining the potential of EV-mediated strategies for the treatment of genetic diseases.
3.
PhoCoil: An Injectable and Photodegradable Single-component Recombinant Protein Hydrogel for Localized Therapeutic Cell Delivery.
Abstract:
Hydrogel biomaterials offer great promise for 3D cell culture and therapeutic delivery. Despite many successes, challenges persist in that gels formed from natural proteins are only marginally tunable while those derived from synthetic polymers lack intrinsic bioinstructivity. Towards the creation of biomaterials with both excellent biocompatibility and customizability, recombinant protein-based hydrogels have emerged as molecularly defined and user-programmable platforms that mimic the proteinaceous nature of the extracellular matrix. Here, we introduce PhoCoil, a dynamically tunable recombinant hydrogel formed from a single protein component with unique multi-stimuli responsiveness. Physical crosslinking through coiled-coil interactions promotes rapid shear-thinning and self-healing behavior, rendering the gel injectable, while an included photodegradable motif affords on-demand network dissolution via visible light. PhoCoil gel photodegradation can be spatiotemporally and lithographically controlled in a dose-dependent manner, through complex tissue, and without harm to encapsulated cells. We anticipate that PhoCoil will enable new applications in tissue engineering and regenerative medicine.
4.
Opticool: Cutting-edge transgenic optical tools.
Abstract:
Only a few short decades have passed since the sequencing of GFP, yet the modern repertoire of transgenically encoded optical tools implies an exponential proliferation of ever improving constructions to interrogate the subcellular environment. A myriad of tags for labeling proteins, RNA, or DNA have arisen in the last few decades, facilitating unprecedented visualization of subcellular components and processes. Development of a broad array of modern genetically encoded sensors allows real-time, in vivo detection of molecule levels, pH, forces, enzyme activity, and other subcellular and extracellular phenomena in ever expanding contexts. Optogenetic, genetically encoded optically controlled manipulation systems have gained traction in the biological research community and facilitate single-cell, real-time modulation of protein function in vivo in ever broadening, novel applications. While this field continues to explosively expand, references are needed to assist scientists seeking to use and improve these transgenic devices in new and exciting ways to interrogate development and disease. In this review, we endeavor to highlight the state and trajectory of the field of in vivo transgenic optical tools.
5.
An optogenetic method for the controlled release of single molecules.
-
Kashyap, P
-
Bertelli, S
-
Cao, F
-
Kostritskaia, Y
-
Blank, F
-
Srikanth, NA
-
Schlack-Leigers, C
-
Saleppico, R
-
Bierhuizen, D
-
Lu, X
-
Nickel, W
-
Campbell, RE
-
Plested, AJR
-
Stauber, T
-
Taylor, MJ
-
Ewers, H
Abstract:
We developed a system for optogenetic release of single molecules in cells. We confined soluble and transmembrane proteins to the Golgi apparatus via a photocleavable protein and released them by short pulses of light. Our method allows for a light dose-dependent delivery of functional proteins to the cytosol and plasma membrane in amounts compatible with single-molecule imaging, greatly simplifying access to single-molecule microscopy of any protein in live cells. We were able to reconstitute ion conductance by delivering BK and LRRC8/volume-regulated anion channels to the plasma membrane. Finally we were able to induce NF-kB signaling in T lymphoblasts stimulated by interleukin-1 by controlled release of a signaling protein that had been knocked out. We observed light-induced formation of functional inflammatory signaling complexes that triggered phosphorylation of the inhibitor of nuclear factor kappa-B kinase only in activated cells. We thus developed an optogenetic method for the reconstitution and investigation of cellular function at the single-molecule level.
6.
A single-component, light-assisted uncaging switch for endoproteolytic release.
-
Cui, M
-
Lee, S
-
Ban, SH
-
Ryu, JR
-
Shen, M
-
Yang, SH
-
Kim, JY
-
Choi, SK
-
Han, J
-
Kim, Y
-
Han, K
-
Lee, D
-
Sun, W
-
Kwon, HB
-
Lee, D
Abstract:
Proteases function as pivotal molecular switches, initiating numerous biological events. Notably, potyviral protease, derived from plant viruses, has emerged as a trusted proteolytic switch in synthetic biological circuits. To harness their capabilities, we have developed a single-component photocleavable switch, termed LAUNCHER (Light-Assisted UNcaging switCH for Endoproteolytic Release), by employing a circularly permutated tobacco etch virus protease and a blue-light-gated substrate, which are connected by fine-tuned intermodular linkers. As a single-component system, LAUNCHER exhibits a superior signal-to-noise ratio compared with multi-component systems, enabling precise and user-controllable release of payloads. This characteristic renders LAUNCHER highly suitable for diverse cellular applications, including transgene expression, tailored subcellular translocation and optochemogenetics. Additionally, the plug-and-play integration of LAUNCHER into existing synthetic circuits facilitates the enhancement of circuit performance. The demonstrated efficacy of LAUNCHER in improving existing circuitry underscores its significant potential for expanding its utilization in various applications.
7.
Optogenetics in Alzheimer's Disease: Focus on Astrocytes.
Abstract:
Alzheimer's disease (AD) is the most common form of dementia, resulting in disability and mortality. The global incidence of AD is consistently surging. Although numerous therapeutic agents with promising potential have been developed, none have successfully treated AD to date. Consequently, the pursuit of novel methodologies to address neurodegenerative processes in AD remains a paramount endeavor. A particularly promising avenue in this search is optogenetics, enabling the manipulation of neuronal activity. In recent years, research attention has pivoted from neurons to glial cells. This review aims to consider the potential of the optogenetic correction of astrocyte metabolism as a promising strategy for correcting AD-related disorders. The initial segment of the review centers on the role of astrocytes in the genesis of neurodegeneration. Astrocytes have been implicated in several pathological processes associated with AD, encompassing the clearance of β-amyloid, neuroinflammation, excitotoxicity, oxidative stress, and lipid metabolism (along with a critical role in apolipoprotein E function). The effect of astrocyte-neuronal interactions will also be scrutinized. Furthermore, the review delves into a number of studies indicating that changes in cellular calcium (Ca2+) signaling are one of the causes of neurodegeneration. The review's latter section presents insights into the application of various optogenetic tools to manipulate astrocytic function as a means to counteract neurodegenerative changes.
8.
Selective induction of programmed cell death using synthetic biology tools.
Abstract:
Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
9.
Fluorogenesis: Inducing Fluorescence in a Non-Fluorescent Protein Through Photoinduced Chromophore Transfer of a Genetically Encoded Chromophore.
Abstract:
Fluorescent proteins, while essential for bioimaging, are limited to visualizing cellular localization without offering additional functionality. We report for the first time a strategy to expand the chemical, structural, and functional diversity of fluorescent proteins by harnessing light to induce red fluorescence in a previously non-fluorescent protein. We accomplish this by inducing the transfer of the genetically encoded chromophore from a photocleavable protein (PhoCl1) to a non-fluorescent kinase (MjRibK) inducing red fluorescence in the latter. We have employed analytical and spectroscopic techniques to validate the presence of red fluorescence in MjRibK. Furthermore, molecular dynamics simulations were carried out to investigate the amino acid residues of MjRibK involved in the generation of red fluorescence. Finally, we demonstrate the ability of the red fluorescent MjRibK to operate as a cyclable high-temperature sensor. We anticipate that this light-induced chromophore transfer strategy will open new possibilities for developing multifunctional genetically encoded fluorescent sensors.
10.
Pyroptosis Induction and Visualization at the Single-Cell Level Using Optogenetics.
Abstract:
Pyroptosis has been identified as a pro-inflammatory form of programmed cell death. It can be triggered by different stimuli including pathogen invasion or cell stress/danger signals releasing hundreds of proteins upon lysis that cause complex responses in neighboring cells. Pyroptosis is executed by the gasdermin (GSDM) family of proteins which, upon cleavage by caspases, form transmembrane pores that release cytokines to induce inflammation. However, despite the importance of gasdermins in the development of inflammatory diseases and cancer, a lot is still to be understood in the downstream consequences of this cell death pathway. Currently, conventional methods, such as drug treatments or chemically forced oligomerization, are limited in the spatiotemporal analysis of pyroptosis signaling in the cellular population, since all cells are primed for undergoing pyroptosis. Here, we provide a protocol for the application of a novel optogenetics tool called NLS_PhoCl_N-GSDMD_mCherry that enables precise temporal and spatial pyroptosis induction in a confocal microscopy setup, followed by imaging of the cell death process and subsequent quantitative analysis of the experiment. This tool opens new opportunities for the study of pyroptosis activation and of its effects on the bystander cell responses.
11.
Precise modulation of embryonic development through optogenetics.
Abstract:
The past decade has witnessed enormous progress in optogenetics, which uses photo-sensitive proteins to control signal transduction in live cells and animals. The ever-increasing amount of optogenetic tools, however, could overwhelm the selection of appropriate optogenetic strategies. In this work, we summarize recent progress in this emerging field and highlight the application of opsin-free optogenetics in studying embryonic development, focusing on new insights gained into optical induction of morphogenesis, cell polarity, cell fate determination, tissue differentiation, neuronal regeneration, synaptic plasticity, and removal of cells during development.
12.
A doxycycline- and light-inducible Cre recombinase mouse model for optogenetic genome editing.
Abstract:
The experimental need to engineer the genome both in time and space, has led to the development of several photoactivatable Cre recombinase systems. However, the combination of inefficient and non-intentional background recombination has prevented thus far the wide application of these systems in biological and biomedical research. Here, we engineer an optimized photoactivatable Cre recombinase system that we refer to as doxycycline- and light-inducible Cre recombinase (DiLiCre). Following extensive characterization in cancer cell and organoid systems, we generate a DiLiCre mouse line, and illustrated the biological applicability of DiLiCre for light-induced mutagenesis in vivo and positional cell-tracing by intravital microscopy. These experiments illustrate how newly formed HrasV12 mutant cells follow an unnatural movement towards the interfollicular dermis. Together, we develop an efficient photoactivatable Cre recombinase mouse model and illustrate how this model is a powerful genome-editing tool for biological and biomedical research.
13.
Optogenetic Protein Cleavage in Zebrafish Embryos.
Abstract:
A wide array of optogenetic tools is available that allow for precise spatiotemporal control over many cellular processes. These tools have been especially popular among zebrafish researchers who take advantage of the embryo's transparency. However, photocleavable optogenetic proteins have not been utilized in zebrafish. We demonstrate successful optical control of protein cleavage in embryos using PhoCl, a photocleavable fluorescent protein. This optogenetic tool offers temporal and spatial control over protein cleavage events, which we demonstrate in light-triggered protein translocation and apoptosis.
14.
Shedding light on current trends in molecular optogenetics.
Abstract:
Molecular optogenetics is a highly dynamic research field. In the past two years, the field was characterized by the development of new allosteric switches as well as the forward integration of optogenetics research towards application. Further, two areas of research have significantly gathered momentum, the use of optogenetics to control liquid-liquid phase separation as well as the application of optogenetic tools in the extracellular space. Here, we review these areas and discuss future directions.
15.
Gigavalent Display of Proteins on Monodisperse Polyacrylamide Hydrogels as a Versatile Modular Platform for Functional Assays and Protein Engineering.
Abstract:
The assembly of robust, modular biological components into complex functional systems is central to synthetic biology. Here, we apply modular "plug and play" design principles to a solid-phase protein display system that facilitates protein purification and functional assays. Specifically, we capture proteins on polyacrylamide hydrogel display beads (PHD beads) made in microfluidic droplet generators. These monodisperse PHD beads are decorated with predefined amounts of anchors, methacrylate-PEG-benzylguanine (BG) and methacrylate-PEG-chloroalkane (CA), that react covalently with SNAP-/Halo-tag fusion proteins, respectively, in a specific, orthogonal, and stable fashion. Anchors, and thus proteins, are distributed throughout the entire bead volume, allowing attachment of ∼109 protein molecules per bead (⌀ 20 μm) -a higher density than achievable with commercial surface-modified beads. We showcase a diverse array of protein modules that enable the secondary capture of proteins, either noncovalently (IgG and SUMO-tag) or covalently (SpyCatcher, SpyTag, SnpCatcher, and SnpTag), in mono- and multivalent display formats. Solid-phase protein binding and enzymatic assays are carried out, and incorporating the photocleavable protein PhoCl enables the controlled release of modules via visible-light irradiation for functional assays in solution. We utilize photocleavage for valency engineering of an anti-TRAIL-R1 scFv, enhancing its apoptosis-inducing potency ∼50-fold through pentamerization.
16.
Recent advances in cellular optogenetics for photomedicine.
Abstract:
Since the successful introduction of exogenous photosensitive proteins, channelrhodopsin, to neurons, optogenetics has enabled substantial understanding of profound brain function by selectively manipulating neural circuits. In an optogenetic system, optical stimulation can be precisely delivered to brain tissue to achieve regulation of cellular electrical activity with unprecedented spatio-temporal resolution in living organisms. In recent years, the development of various optical actuators and novel light-delivery techniques has greatly expanded the scope of optogenetics, enabling the control of other signal pathways in non-neuronal cells for different biomedical applications, such as phototherapy and immunotherapy. This review focuses on the recent advances in optogenetic regulation of cellular activities for photomedicine. We discuss emerging optogenetic tools and light-delivery platforms, along with a survey of optogenetic execution in mammalian and microbial cells.
17.
Engineering of optogenetic devices for biomedical applications in mammalian synthetic biology.
Abstract:
Gene- and cell-based therapies are the next frontiers in the field of medicine. Both are transformative and innovative therapies; however, a lack of safety data limits the translation of such promising technologies to the clinic. Improving the safety and promoting the clinical translation of these therapies can be achieved by tightly regulating the release and delivery of therapeutic outputs. In recent years, the rapid development of optogenetic technology has provided opportunities to develop precision-controlled gene- and cell-based therapies, in which light is introduced to precisely and spatiotemporally manipulate the behaviour of genes and cells. This review focuses on the development of optogenetic tools and their applications in biomedicine, including photoactivated genome engineering and phototherapy for diabetes and tumours. The prospects and challenges of optogenetic tools for future clinical applications are also discussed.
18.
Optogenetics for transcriptional programming and genetic engineering.
Abstract:
Optogenetics combines genetics and biophotonics to enable noninvasive control of biological processes with high spatiotemporal precision. When engineered into protein machineries that govern the cellular information flow as depicted in the central dogma, multiple genetically encoded non-opsin photosensory modules have been harnessed to modulate gene transcription, DNA or RNA modifications, DNA recombination, and genome engineering by utilizing photons emitting in the wide range of 200-1000 nm. We present herein generally applicable modular strategies for optogenetic engineering and highlight latest advances in the broad applications of opsin-free optogenetics to program transcriptional outputs and precisely manipulate the mammalian genome, epigenome, and epitranscriptome. We also discuss current challenges and future trends in opsin-free optogenetics, which has been rapidly evolving to meet the growing needs in synthetic biology and genetics research.
19.
Extracellular Optogenetics at the Interface of Synthetic Biology and Materials Science.
Abstract:
We review fundamental mechanisms and applications of OptoGels: hydrogels with light-programmable properties endowed by photoswitchable proteins ("optoproteins") found in nature. Light, as the primary source of energy on earth, has driven evolution to develop highly-tuned functionalities, such as phototropism and circadian entrainment. These functions are mediated through a growing family of optoproteins that respond to the entire visible spectrum ranging from ultraviolet to infrared by changing their structure to transmit signals inside of cells. In a recent series of articles, engineers and biochemists have incorporated optoproteins into a variety of extracellular systems, endowing them with photocontrollability. While other routes exist for dynamically controlling material properties, light-sensitive proteins have several distinct advantages, including precise spatiotemporal control, reversibility, substrate selectivity, as well as biodegradability and biocompatibility. Available conjugation chemistries endow OptoGels with a combinatorially large design space determined by the set of optoproteins and polymer networks. These combinations result in a variety of tunable material properties. Despite their potential, relatively little of the OptoGel design space has been explored. Here, we aim to summarize innovations in this emerging field and highlight potential future applications of these next generation materials. OptoGels show great promise in applications ranging from mechanobiology, to 3D cell and organoid engineering, and programmable cell eluting materials.
20.
The expanding role of split protein complementation in opsin-free optogenetics.
Abstract:
A comprehensive understanding of signaling mechanisms helps interpret fundamental biological processes and restore cell behavior from pathological conditions. Signaling outcome depends not only on the activity of each signaling component but also on their dynamic interaction in time and space, which remains challenging to probe by biochemical and cell-based assays. Opsin-based optogenetics has transformed neural science research with its spatiotemporal modulation of the activity of excitable cells. Motivated by this advantage, opsin-free optogenetics extends the power of light to a larger spectrum of signaling molecules. This review summarizes commonly used opsin-free optogenetic strategies, presents a historical overview of split protein complementation, and highlights the adaptation of split protein recombination as optogenetic sensors and actuators.
21.
Optophysiology: Illuminating cell physiology with optogenetics.
Abstract:
Optogenetics combines light and genetics to enable precise control of living cells, tissues, and organisms with tailored functions. Optogenetics has the advantages of noninvasiveness, rapid responsiveness, tunable reversibility, and superior spatiotemporal resolution. Following the initial discovery of microbial opsins as light-actuated ion channels, a plethora of naturally occurring or engineered photoreceptors or photosensitive domains that respond to light at varying wavelengths has ushered in the next chapter of optogenetics. Through protein engineering and synthetic biology approaches, genetically encoded photoswitches can be modularly engineered into protein scaffolds or host cells to control a myriad of biological processes, as well as to enable behavioral control and disease intervention in vivo. Here, we summarize these optogenetic tools on the basis of their fundamental photochemical properties to better inform the chemical basis and design principles. We also highlight exemplary applications of opsin-free optogenetics in dissecting cellular physiology (designated "optophysiology") and describe the current progress, as well as future trends, in wireless optogenetics, which enables remote interrogation of physiological processes with minimal invasiveness. This review is anticipated to spark novel thoughts on engineering next-generation optogenetic tools and devices that promise to accelerate both basic and translational studies.
22.
Optogenetic approaches in biotechnology and biomaterials.
Abstract:
Advances in genetic engineering, combined with the development of optical technologies, have allowed optogenetics to broaden its area of possible applications in recent years. However, the application of optogenetic tools in industry, including biotechnology and the production of biomaterials, is still limited, because each practical task requires the engineering of a specific optogenetic system. In this review, we discuss recent advances in the use of optogenetic tools in the production of biofuels and valuable chemicals, the synthesis of biomedical and polymer materials, and plant agrobiology. We also offer a comprehensive analysis of the properties and industrial applicability of light-controlled and other smart biomaterials. These data allow us to outline the prospects for the future use of optogenetics in bioindustry.
23.
Gasdermin D pores are dynamically regulated by local phosphoinositide circuitry.
Abstract:
Gasdermin D forms large, ~21 nm diameter pores in the plasma membrane to drive the cell death program pyroptosis. These pores are thought to be permanently open, and the resultant osmotic imbalance is thought to be highly damaging. Yet some cells mitigate and survive pore formation, suggesting an undiscovered layer of regulation over the function of these pores. However, no methods exist to directly reveal these mechanistic details. Here, we combine optogenetic tools, live cell fluorescence biosensing, and electrophysiology to demonstrate that gasdermin pores display phosphoinositide-dependent dynamics. We quantify repeated and fast opening-closing of these pores on the tens of seconds timescale, visualize the dynamic pore geometry, and identify the signaling that controls dynamic pore activity. The identification of this circuit allows pharmacological tuning of pyroptosis and control of inflammatory cytokine release by living cells.
24.
Modularly Built Synthetic Membraneless Organelles Enabling Targeted Protein Sequestration and Release.
Abstract:
Abstract not available.
25.
Harnessing the power of fluorescence to characterize biomolecular condensates.
Abstract:
Biomolecular condensates are membrane-less cellular compartments that form via phase separation. They serve a multitude of functions in all types of cells. Important insights into the composition, architecture and dynamics of biomolecular condensates have been obtained by harnessing the power of fluorescence-based technologies. In this chapter, methods will be discussed for (1) fluorescent labelling of macromolecules, (2) spatial and temporal mapping and tracking of target molecules in cellular and in vitro settings, (3) controlling formation and dissolution of biomolecular condensates, and (4) fluorescence-based condensate-targeted drug discovery.