Showing 1 - 13 of 13 results
1.
Light-Oxygen-Voltage (LOV)-sensing Domains: Activation Mechanism and Optogenetic Stimulation.
Abstract:
The light-oxygen-voltage (LOV) domains of phototropins emerged as essential constituents of light-sensitive proteins, helping initiate blue light-triggered responses. Moreover, these domains have been identified across all kingdoms of life. LOV domains utilize flavin nucleotides as co-factors and undergo structural rearrangements upon exposure to blue light, which activates an effector domain that executes the final output of the photoreaction. LOV domains are versatile photoreceptors that play critical roles in cellular signaling and environmental adaptation; additionally, they can noninvasively sense and control intracellular processes with high spatiotemporal precision, making them ideal candidates for use in optogenetics, where a light signal is linked to a cellular process through a photoreceptor. The ongoing development of LOV-based optogenetic tools, driven by advances in structural biology, spectroscopy, computational methods, and synthetic biology, has the potential to revolutionize the study of biological systems and enable the development of novel therapeutic strategies.
2.
Capturing the blue-light activated state of the Phot-LOV1 domain from Chlamydomonas reinhardtii using time-resolved serial synchrotron crystallography.
-
Gotthard, G
-
Mous, S
-
Weinert, T
-
Maia, RNA
-
James, D
-
Dworkowski, F
-
Gashi, D
-
Furrer, A
-
Ozerov, D
-
Panepucci, E
-
Wang, M
-
Schertler, G FX
-
Heberle, J
-
Standfuss, J
-
Nogly, P
Abstract:
Light-Oxygen-Voltage (LOV) domains are small photosensory flavoprotein modules that allow converting external stimuli (sunlight) into intracellular signals responsible for various cell behavior (e.g., phototropism and chloroplast relocation). This ability relies on the light-induced formation of a covalent thioether adduct between a flavin chromophore and a reactive cysteine from the protein environment, which triggers a cascade of structural changes that results in the activation of a serine/threonine (Ser/Thr) kinase. Recent developments in time-resolved crystallography may allow the observation of the activation cascade of the LOV domain in real-time, which has been elusive. In this study, we report a robust protocol for the production and stable delivery of microcrystals of the LOV domain of phototropin Phot-1 from Chlamydomonas reinhardtii (CrPhotLOV1) with a high-viscosity injector for time-resolved serial synchrotron crystallography (TR-SSX). The detailed process covers all aspects, from sample optimization to the actual data collection process, which may serve as a guide for soluble protein preparation for TR-SSX. In addition, we show that the obtained crystals preserve the photoreactivity using infrared spectroscopy. Furthermore, the results of the TR-SSX experiment provide high-resolution insights into structural alterations of CrPhotLOV1 from Δt = 2.5 ms up to Δt = 95 ms post-photoactivation, including resolving the geometry of the thioether adduct and the C-terminal region implicated in the signal transduction process.
3.
Recent advances in cellular optogenetics for photomedicine.
Abstract:
Since the successful introduction of exogenous photosensitive proteins, channelrhodopsin, to neurons, optogenetics has enabled substantial understanding of profound brain function by selectively manipulating neural circuits. In an optogenetic system, optical stimulation can be precisely delivered to brain tissue to achieve regulation of cellular electrical activity with unprecedented spatio-temporal resolution in living organisms. In recent years, the development of various optical actuators and novel light-delivery techniques has greatly expanded the scope of optogenetics, enabling the control of other signal pathways in non-neuronal cells for different biomedical applications, such as phototherapy and immunotherapy. This review focuses on the recent advances in optogenetic regulation of cellular activities for photomedicine. We discuss emerging optogenetic tools and light-delivery platforms, along with a survey of optogenetic execution in mammalian and microbial cells.
4.
Time-resolved detection of association/dissociation reactions and conformation changes in photosensor proteins for application in optogenetics.
Abstract:
Photosensor proteins are important not only because of their biological functions but also because of their applications in optogenetics. To understand the molecular mechanism behind their biological functions and consequently seek possible applications to optogenetics, the dynamics of their intermolecular interaction (for example, association/dissociation reaction and conformational changes) upon photoexcitation need to be elucidated. Although it has been difficult to trace such reactions in the time domain using traditional spectroscopic techniques, the time-resolved diffusion method based on the transient grating technique has been demonstrated to possess a significant advantage in detecting such spectrally silent dynamics in a time-resolved manner. In this paper, the principle and studies on blue light sensor proteins, phototropins, are described. Reaction kinetics of dimerization, dissociation reactions, and conformational changes were measured, and reaction schemes were determined. This method can be employed to study protein reactions from the viewpoint of diffusion and to elucidate the reaction schemes and kinetics that cannot be detected by other spectroscopic methods.
5.
The rise and shine of yeast optogenetics.
Abstract:
Optogenetics refers to the control of biological processes with light. The activation of cellular phenomena by defined wavelengths has several advantages compared to traditional chemically-inducible systems, such as spatiotemporal resolution, dose-response regulation, low cost and moderate toxic effects. Optogenetics has been successfully implemented in yeast, a remarkable biological platform that is not only a model organism for cellular and molecular biology studies, but also a microorganism with diverse biotechnological applications. In this review, we summarize the main optogenetic systems implemented in the budding yeast Saccharomyces cerevisiae, which allow orthogonal control (by light) of gene expression, protein subcellular localization, reconstitution of protein activity, or protein sequestration by oligomerization. Furthermore, we review the application of optogenetic systems in the control of metabolic pathways, heterologous protein production and flocculation. We then revise an example of a previously described yeast optogenetic switch, named FUN-LOV, which allows precise and strong activation of the target gene. Finally, we describe optogenetic systems that have not yet been implemented in yeast, which could therefore be used to expand the panel of available tools in this biological chassis. In conclusion, a wide repertoire of optogenetic systems can be used to address fundamental biological questions and broaden the biotechnological toolkit in yeast.
6.
New light on the mechanism of phototransduction in phototropin.
Abstract:
Phototropins are photoreceptor proteins, which regulate blue light dependent biological processes for efficient photosynthesis in plants and algae. The proteins consist of a photosensory domain that responds to the ambient light and an output module that triggers cellular responses. The photosensory domain of phototropin from Chlamydomonas reinhardtii contains two conserved LOV (Light-Oxygen-Voltage) domains with flavin chromophores. Blue light triggers the formation of a covalent cysteine-flavin adduct and upregulates the phototropin kinase activity. Little is known about the structural mechanism which leads to kinase activation and how the two LOV domains contribute to this. Here, we investigate the role of the LOV1 domain from Chlamydomonas reinhardtii phototropin by characterizing the structural changes occurring after blue light illumination with nano- millisecond time-resolved X-ray solution scattering. By structurally fitting the data with atomic models generated by molecular dynamics simulations, we find that the adduct formation induces a rearrangement of the hydrogen bond network from the buried chromophore to the protein surface. Particularly, the change in conformation and associated hydrogen bonding of the conserved glutamine 120 induce a global movement of the β-sheet, ultimately driving a change in electrostatic potential on the protein surface. Based on the change of electrostatics, we propose a structural model of how LOV1 and LOV2 domains interact and regulate the full-length phototropin from Chlamydomonas reinhardtii. This provides a rationale for how LOV photosensor proteins function and contributes to the optimal design of optogenetic tools based on LOV domains.
7.
An optogenetic system to control membrane phospholipid asymmetry through flippase activation in budding yeast.
Abstract:
Lipid asymmetry in biological membranes is essential for various cell functions, such as cell polarity, cytokinesis, and apoptosis. P4-ATPases (flippases) are involved in the generation of such asymmetry. In Saccharomyces cerevisiae, the protein kinases Fpk1p/Fpk2p activate the P4-ATPases Dnf1p/Dnf2p by phosphorylation. Previously, we have shown that a blue-light-dependent protein kinase, phototropin from Chlamydomonas reinhardtii (CrPHOT), complements defects in an fpk1Δ fpk2Δ mutant. Herein, we investigated whether CrPHOT optically regulates P4-ATPase activity. First, we demonstrated that the translocation of NBD-labelled phospholipids to the cytoplasmic leaflet via P4-ATPases was promoted by blue-light irradiation in fpk1Δ fpk2Δ cells with CrPHOT. In addition, blue light completely suppressed the defects in membrane functions (such as endocytic recycling, actin depolarization, and apical-isotropic growth switching) caused by fpk1Δ fpk2Δ mutations. All responses required the kinase activity of CrPHOT. Hence, these results indicate the utility of CrPHOT as a powerful and first tool for optogenetic manipulation of P4-ATPase activity.
8.
Engineering Strategy and Vector Library for the Rapid Generation of Modular Light-Controlled Protein-Protein Interactions.
Abstract:
Optogenetics enables the spatio-temporally precise control of cell and animal behavior. Many optogenetic tools are driven by light-controlled protein-protein interactions (PPIs) that are repurposed from natural light-sensitive domains (LSDs). Applying light-controlled PPIs to new target proteins is challenging because it is difficult to predict which of the many available LSDs, if any, will yield robust light regulation. As a consequence, fusion protein libraries need to be prepared and tested, but methods and platforms to facilitate this process are currently not available. Here, we developed a genetic engineering strategy and vector library for the rapid generation of light-controlled PPIs. The strategy permits fusing a target protein to multiple LSDs efficiently and in two orientations. The public and expandable library contains 29 vectors with blue, green or red light-responsive LSDs, many of which have been previously applied ex vivo and in vivo. We demonstrate the versatility of the approach and the necessity for sampling LSDs by generating light-activated caspase-9 (casp9) enzymes. Collectively, this work provides a new resource for optical regulation of a broad range of target proteins in cell and developmental biology.
9.
Light‐Controlled Mammalian Cells and Their Therapeutic Applications in Synthetic Biology.
Abstract:
The ability to remote control the expression of therapeutic genes in mammalian cells in order to treat disease is a central goal of synthetic biology‐inspired therapeutic strategies. Furthermore, optogenetics, a combination of light and genetic sciences, provides an unprecedented ability to use light for precise control of various cellular activities with high spatiotemporal resolution. Recent work to combine optogenetics and therapeutic synthetic biology has led to the engineering of light‐controllable designer cells, whose behavior can be regulated precisely and noninvasively. This Review focuses mainly on non‐neural optogenetic systems, which are often used in synthetic biology, and their applications in genetic programing of mammalian cells. Here, a brief overview of the optogenetic tool kit that is available to build light‐sensitive mammalian cells is provided. Then, recently developed strategies for the control of designer cells with specific biological functions are summarized. Recent translational applications of optogenetically engineered cells are also highlighted, ranging from in vitro basic research to in vivo light‐controlled gene therapy. Finally, current bottlenecks, possible solutions, and future prospects for optogenetics in synthetic biology are discussed.
10.
Blue-Light Receptors for Optogenetics.
Abstract:
Sensory photoreceptors underpin light-dependent adaptations of organismal physiology, development, and behavior in nature. Adapted for optogenetics, sensory photoreceptors become genetically encoded actuators and reporters to enable the noninvasive, spatiotemporally accurate and reversible control by light of cellular processes. Rooted in a mechanistic understanding of natural photoreceptors, artificial photoreceptors with customized light-gated function have been engineered that greatly expand the scope of optogenetics beyond the original application of light-controlled ion flow. As we survey presently, UV/blue-light-sensitive photoreceptors have particularly allowed optogenetics to transcend its initial neuroscience applications by unlocking numerous additional cellular processes and parameters for optogenetic intervention, including gene expression, DNA recombination, subcellular localization, cytoskeleton dynamics, intracellular protein stability, signal transduction cascades, apoptosis, and enzyme activity. The engineering of novel photoreceptors benefits from powerful and reusable design strategies, most importantly light-dependent protein association and (un)folding reactions. Additionally, modified versions of these same sensory photoreceptors serve as fluorescent proteins and generators of singlet oxygen, thereby further enriching the optogenetic toolkit. The available and upcoming UV/blue-light-sensitive actuators and reporters enable the detailed and quantitative interrogation of cellular signal networks and processes in increasingly more precise and illuminating manners.
11.
Spatio-temporally precise activation of engineered receptor tyrosine kinases by light.
Abstract:
Receptor tyrosine kinases (RTKs) are a large family of cell surface receptors that sense growth factors and hormones and regulate a variety of cell behaviours in health and disease. Contactless activation of RTKs with spatial and temporal precision is currently not feasible. Here, we generated RTKs that are insensitive to endogenous ligands but can be selectively activated by low-intensity blue light. We screened light-oxygen-voltage (LOV)-sensing domains for their ability to activate RTKs by light-activated dimerization. Incorporation of LOV domains found in aureochrome photoreceptors of stramenopiles resulted in robust activation of the fibroblast growth factor receptor 1 (FGFR1), epidermal growth factor receptor (EGFR) and rearranged during transfection (RET). In human cancer and endothelial cells, light induced cellular signalling with spatial and temporal precision. Furthermore, light faithfully mimicked complex mitogenic and morphogenic cell behaviour induced by growth factors. RTKs under optical control (Opto-RTKs) provide a powerful optogenetic approach to actuate cellular signals and manipulate cell behaviour.
12.
Old chromophores, new photoactivation paradigms, trendy applications: flavins in blue light-sensing photoreceptors.
Abstract:
The knowledge on the mechanisms by which blue light (BL) is sensed by diverse and numerous organisms, and of the physiological responses elicited by the BL photoreceptors, has grown remarkably during the last two decades. The basis for this "blue revival" was set by the identification and molecular characterization of long sought plant BL sensors, employing flavins as chromophores, chiefly cryptochromes and phototropins. The latter photosensors are the foundation members of the so-called light, oxygen, voltage (LOV)-protein family, largely spread among archaea, bacteria, fungi and plants. The accumulation of sequenced microbial genomes during the last years has added the BLUF (Blue Light sensing Using FAD) family to the BL photoreceptors and yielded the opportunity for intense "genome mining," which has presented to us the intriguing wealth of BL sensing in prokaryotes. In this contribution we provide an update of flavin-based BL sensors of the LOV and BLUF type, from prokaryotic microorganisms, with special emphasis to their light-activation pathways and molecular signal-transduction mechanisms. Rather than being a fully comprehensive review, this research collects the most recent discoveries and aims to unveil and compare signaling pathways and mechanisms of BL sensors.
13.
The LOV domain family: photoresponsive signaling modules coupled to diverse output domains.
Abstract:
For single-cell and multicellular systems to survive, they must accurately sense and respond to their cellular and extracellular environment. Light is a nearly ubiquitous environmental factor, and many species have evolved the capability to respond to this extracellular stimulus. Numerous photoreceptors underlie the activation of light-sensitive signal transduction cascades controlling these responses. Here, we review the properties of the light, oxygen, or voltage (LOV) family of blue-light photoreceptor domains, a subset of the Per-ARNT-Sim (PAS) superfamily. These flavin-binding domains, first identified in the higher-plant phototropins, are now shown to be present in plants, fungi, and bacteria. Notably, LOV domains are coupled to a wide array of other domains, including kinases, phosphodiesterases, F-box domains, STAS domains, and zinc fingers, which suggests that the absorption of blue light by LOV domains regulates the activity of these structurally and functionally diverse domains. LOV domains contain a conserved molecular volume extending from the flavin cofactor, which is the locus for light-driven structural change, to the molecular surface. We discuss the role of this conserved volume of structure in LOV-regulated processes.