Showing 1 - 25 of 85 results
1.
Light-driven synchronization of optogenetic clocks.
Abstract:
Synthetic genetic oscillators can serve as internal clocks within engineered cells to program periodic expression. However, cell-to-cell variability introduces a dispersion in the characteristics of these clocks that drives the population to complete desynchronization. Here, we introduce the optorepressilator, an optically controllable genetic clock that combines the repressilator, a three-node synthetic network in E. coli, with an optogenetic module enabling to reset, delay, or advance its phase using optical inputs. We demonstrate that a population of optorepressilators can be synchronized by transient green light exposure or entrained to oscillate indefinitely by a train of short pulses, through a mechanism reminiscent of natural circadian clocks. Furthermore, we investigate the system's response to detuned external stimuli observing multiple regimes of global synchronization. Integrating experiments and mathematical modeling, we show that the entrainment mechanism is robust and can be understood quantitatively from single cell to population level.
2.
Integrating bioprinting and optogenetic technologies for precision plant tissue engineering.
Abstract:
Recent advancements in plant bioprinting and optogenetic tools have unlocked new avenues to revolutionize plant tissue engineering. Bioprinting of plant cells has the potential to craft intricate 3D structures incorporating multiple cell types, replicating the complex microenvironments found in plants. Concurrently, optogenetic tools enable the control of biological events with spatial, temporal, and quantitative precision. Originally developed for human and microbial systems, these two cutting-edge methodologies are now being adapted for plant research. Although still in the early stages of development, we here review the latest progress in plant bioprinting and optogenetics and discuss compelling opportunities for plant biotechnology and research arising from the combination of the two technologies.
3.
Cryo-EM structures of a bathy phytochrome histidine kinase reveal a unique light-dependent activation mechanism.
Abstract:
Phytochromes are photoreceptor proteins in plants, fungi, and bacteria. They can adopt two photochromic states with differential biochemical responses. The structural changes transducing the signal from the chromophore to the biochemical output modules are poorly understood due to challenges in capturing structures of the dynamic, full-length protein. Here, we present cryoelectron microscopy (cryo-EM) structures of the phytochrome from Pseudomonas aeruginosa (PaBphP) in its resting (Pfr) and photoactivated (Pr) state. The kinase-active Pr state has an asymmetric, dimeric structure, whereas the kinase-inactive Pfr state opens up. This behavior is different from other known phytochromes and we explain it with the unusually short connection between the photosensory and output modules. Multiple sequence alignment of this region suggests evolutionary optimization for different modes of signal transduction in sensor proteins. The results establish a new mechanism for light-sensing by phytochrome histidine kinases and provide input for the design of optogenetic phytochrome variants.
4.
Sequential delivery of photosensitizers and checkpoint inhibitors by engineered bacteria for enhanced cancer photodynamic immunotherapy.
-
Liu, X
-
Fan, Y
-
Zhang, X
-
Li, L
-
Yang, C
-
Ma, X
-
Bai, G
-
Sun, D
-
Wang, Y
-
Wang, J
-
Li, Y
-
Shi, Y
-
Liu, J
-
Zhang, Y
-
Wang, H
Abstract:
Engineered bacteria-based cancer therapy has increasingly been considered to be a promising therapeutic strategy due to the development of synthetic biology. Wherein, engineering bacteria-mediated photodynamic therapy (PDT)-immunotherapy shows greater advantages and potential in treatment efficiency than monotherapy. However, the unsustainable regeneration of photosensitizers (PSs) and weak immune responses limit the therapeutic efficiency. Herein, we developed an engineered bacteria-based delivery system for sequential delivery of PSs and checkpoint inhibitors in cancer PDT-immunotherapy. The biosynthetic pathway of 5-aminolevulinic acid (5-ALA) was introduced into Escherichia coli, yielding a supernatant concentration of 172.19 mg/L after 10 h of growth. And another strain was endowed with the light-controllable releasement of anti-programmed cell death-ligand 1 nanobodies (anti-PD-L1). This system exhibited a collaborative effect, where PDT initiated tumor cell death and the released tumor cell fragments stimulated immunity, followed by the elimination of residual tumor cells. The tumor inhibition rate reached 74.97%, and the portion of activated T cells and inflammatory cytokines were reinforced. The results demonstrated that the engineered bacteria-based collaborative system could sequentially deliver therapeutic substance and checkpoint inhibitors, and achieve good therapeutic therapy. This paper will provide a new perspective for the cancer PDT-immunotherapy.
5.
Luminescent ingestible electronic capsules for in vivo regulation of optogenetic engineered bacteria.
-
Li, L
-
Feng, Z
-
Zhang, X
-
Li, M
-
Yang, H
-
Sun, D
-
Li, H
-
Xue, H
-
Wang, H
-
Wang, Y
-
Liu, L
-
Shi, Y
-
Liu, D
-
Du, T
-
Wang, H
Abstract:
The ideal engineered microbial smart-drug should be capable of functioning on demand at specific sites in vivo. However, precise regulation of engineered microorganisms poses challenges in the convoluted and elongated intestines. Despite the promising application potential of optogenetic regulation strategies based on light signals, the poor tissue penetration of light signals limits their application in large experimental animals. Given the rapid development of ingestible electronic capsules in recent years, taking advantage of them as regulatory devices to deliver light signals in situ to engineered bacteria within the intestines has become feasible. In this study, we established an electronic-microorganism signaling system, realized by two Bluetooth-controlled luminescent electronic capsules were designed. The “Manager” capsule is equipped with a photosensor to monitor the distribution of engineered bacteria and to activate the optogenetic function of the bacteria by emitting green light. The other capsule, “Locator”, can control the in situ photopolymerization of hydrogels in the intestines via ultraviolet light, aiding in the retention of engineered bacteria at specific sites. These two electronic capsules are expected to work synergistically to regulate the distribution and function of engineered bacteria in vivo, and their application in the treatment of colitis in pigs is currently being investigated, with relevant results to be updated subsequently.
6.
Ultrafast Primary Dynamics and Isomerization Mechanism of a Far-Red Sensing Cyanobacteriochrome.
-
Niu, K
-
Wang, D
-
Zhang, Y
-
Biju, L
-
Liu, N
-
Wang, X
-
Wang, L
-
Ren, Z
-
Lu, F
-
Yang, X
-
Zhong, D
Abstract:
Far-red cyanobacteriochromes (CBCRs) are bilin-based photosensory proteins that promise to be novel optical agents in optogenetics and deep tissue imaging. Recent structural studies of a far-red CBCR 2551g3 have revealed a unique all-Z,syn chromophore conformation in the far-red-absorbing Pfr state. Understanding the photoswitching mechanism through bilin photoisomerization is important for developing novel biomedical applications. Here, we employ femtosecond spectroscopy and site-directed mutagenesis to systematically characterize the dynamics of wild-type 2551g3 and four critical mutants in the 15Z Pfr state. We captured local relaxations in several picoseconds and isomerization dynamics in hundreds of picoseconds. Most mutants exhibited faster local relaxation, while their twisting dynamics and photoproducts depend on specific protein-chromophore interactions around the D-ring and C-ring. These results collectively reveal a unique dynamic pattern of excited-state evolution arising from a relatively rigid protein environment, thereby elucidating the molecular mechanism of Pfr-state photoisomerization in far-red CBCRs.
7.
Deep model predictive control of gene expression in thousands of single cells.
Abstract:
Gene expression is inherently dynamic, due to complex regulation and stochastic biochemical events. However, the effects of these dynamics on cell phenotypes can be difficult to determine. Researchers have historically been limited to passive observations of natural dynamics, which can preclude studies of elusive and noisy cellular events where large amounts of data are required to reveal statistically significant effects. Here, using recent advances in the fields of machine learning and control theory, we train a deep neural network to accurately predict the response of an optogenetic system in Escherichia coli cells. We then use the network in a deep model predictive control framework to impose arbitrary and cell-specific gene expression dynamics on thousands of single cells in real time, applying the framework to generate complex time-varying patterns. We also showcase the framework's ability to link expression patterns to dynamic functional outcomes by controlling expression of the tetA antibiotic resistance gene. This study highlights how deep learning-enabled feedback control can be used to tailor distributions of gene expression dynamics with high accuracy and throughput without expert knowledge of the biological system.
8.
Correction to: Increased RTN3 phenocopies nonalcoholic fatty liver disease by inhibiting the AMPK-IDH2 pathway.
Abstract:
[This corrects the article DOI: 10.1002/mco2.226.].
9.
Crucial Residue for Tuning Thermal Relaxation Kinetics in the Biliverdin-binding Cyanobacteriochrome Photoreceptor Revealed by Site-saturation Mutagenesis.
Abstract:
Cyanobacteriochromes (CBCRs) are cyanobacterial photoreceptors distantly related to the phytochromes sensing red and far-red light reversibly. Only the cGMP phosphodiesterase/Adenylate cyclase/FhlA (GAF) domain is needed for chromophore incorporation and proper photoconversion. The CBCR GAF domains covalently ligate linear tetrapyrrole chromophores and show reversible photoconversion between two light-absorbing states. In most cases, the two light-absorbing states are stable under dark conditions, but in some cases, the photoproduct state undergoes thermal relaxation back to the dark-adapted state during thermal relaxation. In this study, we examined the engineered CBCR GAF domain, AnPixJg2_BV4. AnPixJg2_BV4 covalently binds biliverdin IX-alpha (BV) and shows reversible photoconversion between a far-red-absorbing Pfr dark-adapted state and an orange-absorbing Po photoproduct state. Because the BV is an intrinsic chromophore of mammalian cells and absorbs far-red light penetrating into deep tissues, BV-binding CBCR molecules are useful for the development of optogenetic and bioimaging tools used in mammals. To obtain a better developmental platform molecule, we performed site-saturation random mutagenesis on the Phe319 position. We succeeded in obtaining variant molecules with higher chromophore-binding efficiency and higher molar extinction coefficient. Furthermore, we observed a wide variation in thermal relaxation kinetics, with an 81-fold difference between the slowest and fastest rates. Both molecules with relatively slow and fast thermal relaxation would be advantageous for optogenetic control.
10.
Engineering Green-light-responsive Heterologous Gene Expression in Pseudomonas.
Abstract:
Engineering bacterial properties requires precision and fine-tuning for optimal control of the desired application. In consequence, it is essential to accurately turn the function of interest from OFF to ON state and vice versa, avoiding any type of residual activation. For this type of purpose, light switches have revealed a clean and powerful tool in which control does not depend on the addition of chemical compounds that may remain in the media. To reach this degree of directed regulation through light, the switch based on the cyanobacterial two-component system CcaSR system was previously adapted to manipulate Pseudomonas putida for transcription of a gene of interest. In this chapter, we describe how to induce biofilm formation by placing the expression of the c-di-GMP-producing diguanylate cyclase PleD from Caulobacter sp. under the control of the CcaSR system. The regulation through optogenetics accomplished with this protocol promotes higher exploitation of biofilm beneficial features in a cheaper and cleaner way compared to chemical induction.
11.
Multicolor optogenetics for regulating flux ratio of three glycolytic pathways using EL222 and CcaSR in Escherichia coli.
Abstract:
Optogenetics is an attractive synthetic biology tool for controlling the metabolic flux distribution. Here, we demonstrated optogenetic flux ratio control of glycolytic pathways consisting of the Embden-Meyerhof-Parnas (EMP), pentose phosphate (PP), and Entner-Doudoroff (ED) pathways by illuminating multicolor lights using blue light-responsive EL222 and green/red light-responsive CcaSR in Escherichia coli. EL222 forms a dimer and binds to a particular DNA sequence under blue light; therefore, target gene expression can be reduced or induced by inserting a recognition sequence into its promoter regions. First, a flux ratio between the PP and ED pathways was controlled by blue light using EL222. After blocking the EMP pathway, the EL222-recognition sequence was inserted between the -35 and -10 regions of gnd to repress the PP flux and was also inserted upstream of the -35 region of edd to induce ED flux. After adjusting light intensity, the PP:ED flux ratios were 60:39% and 29:70% under dark and blue light conditions, respectively. Finally, a CcaSR-based pgi expression system was implemented to control the flux ratio between the EMP and PP + ED pathways by illuminating green/red light. The EMP:PP:ED flux ratios were 80:9:11%, 14:35:51%, and 33:5:62% under green, red, and red and blue light, respectively.
12.
Unlocking the potential of optogenetics in microbial applications.
Abstract:
Optogenetics is a powerful approach that enables researchers to use light to dynamically manipulate cellular behavior. Since the first published use of optogenetics in synthetic biology, the field has expanded rapidly, yielding a vast array of tools and applications. Despite its immense potential for achieving high spatiotemporal precision, optogenetics has predominantly been employed as a substitute for conventional chemical inducers. In this short review, we discuss key features of microbial optogenetics and highlight applications for understanding biology, cocultures, bioproduction, biomaterials, and therapeutics, in which optogenetics is more fully utilized to realize goals not previously possible by other methods.
13.
Toward a modeling, optimization, and predictive control framework for fed-batch metabolic cybergenetics.
Abstract:
Biotechnology offers many opportunities for the sustainable manufacturing of valuable products. The toolbox to optimize bioprocesses includes extracellular process elements such as the bioreactor design and mode of operation, medium formulation, culture conditions, feeding rates, and so on. However, these elements are frequently insufficient for achieving optimal process performance or precise product composition. One can use metabolic and genetic engineering methods for optimization at the intracellular level. Nevertheless, those are often of static nature, failing when applied to dynamic processes or if disturbances occur. Furthermore, many bioprocesses are optimized empirically and implemented with little-to-no feedback control to counteract disturbances. The concept of cybergenetics has opened new possibilities to optimize bioprocesses by enabling online modulation of the gene expression of metabolism-relevant proteins via external inputs (e.g., light intensity in optogenetics). Here, we fuse cybergenetics with model-based optimization and predictive control for optimizing dynamic bioprocesses. To do so, we propose to use dynamic constraint-based models that integrate the dynamics of metabolic reactions, resource allocation, and inducible gene expression. We formulate a model-based optimal control problem to find the optimal process inputs. Furthermore, we propose using model predictive control to address uncertainties via online feedback. We focus on fed-batch processes, where the substrate feeding rate is an additional optimization variable. As a simulation example, we show the optogenetic control of the ATPase enzyme complex for dynamic modulation of enforced ATP wasting to adjust product yield and productivity.
14.
Highlighter: An optogenetic system for high-resolution gene expression control in plants.
Abstract:
Optogenetic actuators have revolutionized the resolution at which biological processes can be controlled. In plants, deployment of optogenetics is challenging due to the need for these light-responsive systems to function in the context of horticultural light environments. Furthermore, many available optogenetic actuators are based on plant photoreceptors that might crosstalk with endogenous signaling processes, while others depend on exogenously supplied cofactors. To overcome such challenges, we have developed Highlighter, a synthetic, light-gated gene expression system tailored for in planta function. Highlighter is based on the photoswitchable CcaS-CcaR system from cyanobacteria and is repurposed for plants as a fully genetically encoded system. Analysis of a re-engineered CcaS in Escherichia coli demonstrated green/red photoswitching with phytochromobilin, a chromophore endogenous to plants, but also revealed a blue light response likely derived from a flavin-binding LOV-like domain. We deployed Highlighter in transiently transformed Nicotiana benthamiana for optogenetic control of fluorescent protein expression. Using light to guide differential fluorescent protein expression in nuclei of neighboring cells, we demonstrate unprecedented spatiotemporal control of target gene expression. We implemented the system to demonstrate optogenetic control over plant immunity and pigment production through modulation of the spectral composition of broadband visible (white) light. Highlighter is a step forward for optogenetics in plants and a technology for high-resolution gene induction that will advance fundamental plant biology and provide new opportunities for crop improvement.
15.
Diya – a universal light illumination platform for multiwell plate cultures.
Abstract:
Recent progress in protein engineering has established optogenetics as one of the leading external non-invasive stimulation strategies, with many optogenetic tools being designed for in vivo operation. Characterization and optimization of these tools require a high-throughput and versatile light delivery system targeting micro-titer culture volumes. Here, we present a universal light illumination platform – Diya, compatible with a wide range of cell culture plates and dishes. Diya hosts specially-designed features ensuring active thermal management, homogeneous illumination, and minimal light bleedthrough. It offers light induction programming via a user-friendly custom-designed GUI. Through extensive characterization experiments with multiple optogenetic tools in diverse model organisms (bacteria, yeast and human cell lines), we show that Diya maintains viable conditions for cell cultures undergoing light induction. Finally, we demonstrate an optogenetic strategy for in vivo biomolecular controller operation. With a custom-designed antithetic integral feedback circuit, we exhibit robust perfect adaptation and light-controlled set-point variation using Diya.
16.
OptoCRISPRi-HD: Engineering a Bacterial Green-Light-Activated CRISPRi System with a High Dynamic Range.
Abstract:
The ability to modulate gene expression is crucial for studying gene function and programming cell behaviors. Combining the reliability of CRISPRi and the precision of optogenetics, the optoCRISPRi technique is emerging as an advanced tool for live-cell gene regulation. Since previous versions of optoCRISPRi often exhibit no more than a 10-fold dynamic range due to the leakage activity, they are not suitable for targets that are sensitive to such leakage or critical for cell growth. Here, we describe a green-light-activated CRISPRi system with a high dynamic range (40 fold) and the flexibility of changing targets in Escherichia coli. Our optoCRISPRi-HD system can efficiently repress essential genes, nonessential genes, or inhibit the initiation of DNA replication. Providing a regulative system with high resolution over space-time and extensive targets, our study would facilitate further research involving complex gene networks, metabolic flux redirection, or bioprinting.
17.
Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives.
Abstract:
Numerous photoreceptors and genetic circuits emerged over the past two decades and now enable the light-dependent i.e., optogenetic, regulation of gene expression in bacteria. Prompted by light cues in the near-ultraviolet to near-infrared region of the electromagnetic spectrum, gene expression can be up- or downregulated stringently, reversibly, non-invasively, and with precision in space and time. Here, we survey the underlying principles, available options, and prominent examples of optogenetically regulated gene expression in bacteria. While transcription initiation and elongation remain most important for optogenetic intervention, other processes e.g., translation and downstream events, were also rendered light-dependent. The optogenetic control of bacterial expression predominantly employs but three fundamental strategies: light-sensitive two-component systems, oligomerization reactions, and second-messenger signaling. Certain optogenetic circuits moved beyond the proof-of-principle and stood the test of practice. They enable unprecedented applications in three major areas. First, light-dependent expression underpins novel concepts and strategies for enhanced yields in microbial production processes. Second, light-responsive bacteria can be optogenetically stimulated while residing within the bodies of animals, thus prompting the secretion of compounds that grant health benefits to the animal host. Third, optogenetics allows the generation of precisely structured, novel biomaterials. These applications jointly testify to the maturity of the optogenetic approach and serve as blueprints bound to inspire and template innovative use cases of light-regulated gene expression in bacteria. Researchers pursuing these lines can choose from an ever-growing, versatile, and efficient toolkit of optogenetic circuits.
18.
The bright frontiers of microbial metabolic optogenetics.
Abstract:
In recent years, light-responsive systems from the field of optogenetics have been applied to several areas of metabolic engineering with remarkable success. By taking advantage of light's high tunability, reversibility, and orthogonality to host endogenous processes, optogenetic systems have enabled unprecedented dynamical controls of microbial fermentations for chemical production, metabolic flux analysis, and population compositions in co-cultures. In this article, we share our opinions on the current state of this new field of metabolic optogenetics.We make the case that it will continue to impact metabolic engineering in increasingly new directions, with the potential to challenge existing paradigms for metabolic pathway and strain optimization as well as bioreactor operation.
19.
Illuminating bacterial behaviors with optogenetics.
Abstract:
Optogenetic approaches enable light-mediated control of cellular activities using genetically encoded photoreceptors. While optogenetic technology is already well established in neuroscience and fundamental research, the implementation of optogenetic tools in bacteriology is still emerging. Engineered bacteria with the specific optogenetic system that function at the transcriptional or post-translational level can sense and respond to light, allowing optogenetic control of bacterial behaviors. In this review, we give a brief overview of available optogenetic systems, including their mode of action, classification, and engineering strategies, and focus on optogenetic control of bacterial behaviors with the highlight of strategies for use of optogenetic systems.
20.
Optogenetic technologies in translational cancer research.
Abstract:
Gene and cell therapies are widely recognized as future cancer therapeutics but poor controllability limits their clinical applications. Optogenetics, the use of light-controlled proteins to precisely spatiotemporally regulate the activity of genes and cells, opens up new possibilities for cancer treatment. Light of specific wavelength can activate the immune response, oncolytic activity and modulate cell signaling in tumor cells non-invasively, in dosed manner, with tissue confined action and without side effects of conventional therapies. Here, we review optogenetic approaches in cancer research, their clinical potential and challenges of incorporating optogenetics in cancer therapy. We critically discuss beneficial combinations of optogenetic technologies with therapeutic nanobodies, T-cell activation and CAR-T cell approaches, genome editors and oncolytic viruses. We consider viral vectors and nanoparticles for delivering optogenetic payloads and activating light to tumors. Finally, we highlight herein the prospects for integrating optogenetics into immunotherapy as a novel, fast, reversible and safe approach to cancer treatment.
21.
Platforms for Optogenetic Stimulation and Feedback Control.
Abstract:
Harnessing the potential of optogenetics in biology requires methodologies from different disciplines ranging from biology, to mechatronics engineering, to control engineering. Light stimulation of a synthetic optogenetic construct in a given biological species can only be achieved via a suitable light stimulation platform. Emerging optogenetic applications entail a consistent, reproducible, and regulated delivery of light adapted to the application requirement. In this review, we explore the evolution of light-induction hardware-software platforms from simple illumination set-ups to sophisticated microscopy, microtiter plate and bioreactor designs, and discuss their respective advantages and disadvantages. Here, we examine design approaches followed in performing optogenetic experiments spanning different cell types and culture volumes, with induction capabilities ranging from single cell stimulation to entire cell culture illumination. The development of automated measurement and stimulation schemes on these platforms has enabled researchers to implement various in silico feedback control strategies to achieve computer-controlled living systems-a theme we briefly discuss in the last part of this review.
22.
Synthetic microbiology applications powered by light.
Abstract:
Synthetic biology is a field of research in which molecular parts (mostly nucleic acids and proteins) are de novo created or modified and then used either alone or in combination to achieve new functions that can help solve the problems of our modern society. In synthetic microbiology, microbes are employed rather than other organisms or cell-free systems. Optogenetics, a relatively recently established technology that relies on the use of genetically encoded photosensitive proteins to control biological processes with high spatiotemporal precision, offers the possibility to empower synthetic (micro)biology applications due to the many positive features that light has as an external trigger. In this review, we describe recent synthetic microbiology applications that made use of optogenetics after briefly introducing the molecular mechanism behind some of the most employed optogenetic tools. We highlight the power and versatility of this technique, which opens up new horizons for both research and industry.
23.
Engineering Light-Control in Biology.
Abstract:
Unraveling the transformative power of optogenetics in biology requires sophisticated engineering for the creation and optimization of light-regulatable proteins. In addition, diverse strategies have been used for the tuning of these light-sensitive regulators. This review highlights different protein engineering and synthetic biology approaches, which might aid in the development and optimization of novel optogenetic proteins (Opto-proteins). Focusing on non-neuronal optogenetics, chromophore availability, general strategies for creating light-controllable functions, modification of the photosensitive domains and their fusion to effector domains, as well as tuning concepts for Opto-proteins are discussed. Thus, this review shall not serve as an encyclopedic summary of light-sensitive regulators but aims at discussing important aspects for the engineering of light-controllable proteins through selected examples.
24.
Optogenetic tools for microbial synthetic biology.
Abstract:
Chemical induction is one of the most common modalities used to manipulate gene expression in living systems. However, chemical induction can be toxic or expensive that compromise the economic feasibility when it comes to industrial-scale synthetic biology applications. These complications have driven the pursuit of better induction systems. Optogenetics technique can be a solution as it not only enables dynamic control with unprecedented spatiotemporal precision but also is inexpensive and eco-friendlier. The optogenetic technique harnesses natural light-sensing modules that are genetically encodable and re-programmable in various hosts. By further engineering these modules to connect with the microbial regulatory machinery, gene expression and protein activity can be finely tuned simply through light irradiation. Recent works on applying optogenetics to microbial synthetic biology have yielded remarkable achievements. To further expand the usability of optogenetics, more optogenetic tools with greater portability that are compatible with different microbial hosts need to be developed. This review focuses on non-opsin optogenetic systems and the current state of optogenetic advancements in microbes, by showcasing the different designs and functions of optogenetic tools, followed by an insight into the optogenetic approaches used to circumvent challenges in synthetic biology.
25.
Optogenetics Illuminates Applications in Microbial Engineering.
Abstract:
Optogenetics has been used in a variety of microbial engineering applications, such as chemical and protein production, studies of cell physiology, and engineered microbe-host interactions. These diverse applications benefit from the precise spatiotemporal control that light affords, as well as its tunability, reversibility, and orthogonality. This combination of unique capabilities has enabled a surge of studies in recent years investigating complex biological systems with completely new approaches. We briefly describe the optogenetic tools that have been developed for microbial engineering, emphasizing the scientific advancements that they have enabled. In particular, we focus on the unique benefits and applications of implementing optogenetic control, from bacterial therapeutics to cybergenetics. Finally, we discuss future research directions, with special attention given to the development of orthogonal multichromatic controls. With an abundance of advantages offered by optogenetics, the future is bright in microbial engineering. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.