Showing 1 - 3 of 3 results
1.
Optogenetic Control of Condensates: Principles and Applications.
Abstract:
Biomolecular condensates appear throughout cell physiology and pathology, but the specific role of condensation or its dynamics is often difficult to determine. Optogenetics offers an expanding toolset to address these challenges, providing tools to directly control condensation of arbitrary proteins with precision over their formation, dissolution, and patterning in space and time. In this review, we describe the current state of the field for optogenetic control of condensation. We survey the proteins and their derivatives that form the foundation of this toolset, and we discuss the factors that distinguish them to enable appropriate selection for a given application. We also describe recent examples of the ways in which optogenetic condensation has been used in both basic and applied studies. Finally, we discuss important design considerations when engineering new proteins for optogenetic condensation, and we preview future innovations that will further empower this toolset in the coming years.
2.
Spatiotemporal control of subcellular O-GlcNAc signaling using Opto-OGT.
-
Ong, Q
-
Lim, R
-
Goh, C
-
Liao, Y
-
Chan, SE
-
Lim, C
-
Kam, V
-
Yap, J
-
Tseng, T
-
Desrouleaux, R
-
Wang, LC
-
Ler, SG
-
Lim, SL
-
Kim, S
-
Sobota, RM
-
Bennett, AM
-
Han, W
-
Yang, X
Abstract:
The posttranslational modification of intracellular proteins through O-linked β-N-acetylglucosamine (O-GlcNAc) is a conserved regulatory mechanism in multicellular organisms. Catalyzed by O-GlcNAc transferase (OGT), this dynamic modification plays an essential role in signal transduction, gene expression, organelle function, and systemic physiology. Here we present Opto-OGT, an optogenetic probe that allows for precise spatiotemporal control of OGT activity through light stimulation. By fusing a photosensitive cryptochrome protein to OGT, Opto-OGT can be robustly and reversibly activated with high temporal resolution by blue light and exhibits minimal background activity without illumination. Transient activation of Opto-OGT results in mTORC activation and AMPK suppression which recapitulate nutrient-sensing signaling. Furthermore, Opto-OGT can be customized to be localized at specific subcellular sites. By targeting OGT to the plasma membrane, we demonstrate downregulation of site-specific AKT phosphorylation and signaling outputs in response to insulin stimulation. Thus, Opto-OGT is a powerful tool to define the role of O-GlcNAcylation in cell signaling and physiology.
3.
Understanding CRY2 interactions for optical control of intracellular signaling.
Abstract:
Arabidopsis cryptochrome 2 (CRY2) can simultaneously undergo light-dependent CRY2-CRY2 homo-oligomerization and CRY2-CIB1 hetero-dimerization, both of which have been widely used to optically control intracellular processes. Applications using CRY2-CIB1 interaction desire minimal CRY2 homo-oligomerization to avoid unintended complications, while those utilizing CRY2-CRY2 interaction prefer robust homo-oligomerization. However, selecting the type of CRY2 interaction has not been possible as the molecular mechanisms underlying CRY2 interactions are unknown. Here we report CRY2-CIB1 and CRY2-CRY2 interactions are governed by well-separated protein interfaces at the two termini of CRY2. N-terminal charges are critical for CRY2-CIB1 interaction. Moreover, two C-terminal charges impact CRY2 homo-oligomerization, with positive charges facilitating oligomerization and negative charges inhibiting it. By engineering C-terminal charges, we develop CRY2high and CRY2low with elevated or suppressed oligomerization respectively, which we use to tune the levels of Raf/MEK/ERK signaling. These results contribute to our understanding of the mechanisms underlying light-induced CRY2 interactions and enhance the controllability of CRY2-based optogenetic systems.Cryptochrome 2 (CRY2) can form light-regulated CRY2-CRY2 homo-oligomers or CRY2-CIB1 hetero-dimers, but modulating these interactions is difficult owing to the lack of interaction mechanism. Here the authors identify the interactions facilitating homo-oligomers and introduce mutations to create low and high oligomerization versions.