Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 44 results
1.

Optogenetic Control of Condensates: Principles and Applications.

blue red UV BLUF domains Cryptochromes LOV domains Phytochromes UV receptors Review
J Mol Biol, 24 Oct 2024 DOI: 10.1016/j.jmb.2024.168835 Link to full text
Abstract: Biomolecular condensates appear throughout cell physiology and pathology, but the specific role of condensation or its dynamics is often difficult to determine. Optogenetics offers an expanding toolset to address these challenges, providing tools to directly control condensation of arbitrary proteins with precision over their formation, dissolution, and patterning in space and time. In this review, we describe the current state of the field for optogenetic control of condensation. We survey the proteins and their derivatives that form the foundation of this toolset, and we discuss the factors that distinguish them to enable appropriate selection for a given application. We also describe recent examples of the ways in which optogenetic condensation has been used in both basic and applied studies. Finally, we discuss important design considerations when engineering new proteins for optogenetic condensation, and we preview future innovations that will further empower this toolset in the coming years.
2.

Mesoscale regulation of MTOCs by the E3 ligase TRIM37.

blue CRY2clust hTERT RPE-1 Signaling cascade control Control of cytoskeleton / cell motility / cell shape Cell cycle control
bioRxiv, 9 Oct 2024 DOI: 10.1101/2024.10.09.617407 Link to full text
Abstract: Centrosomes ensure accurate chromosome segregation during cell division. Although the regulation of centrosome number is well-established, less is known about the suppression of non-centrosomal MTOCs (ncMTOCs). The E3 ligase TRIM37, implicated in Mulibrey nanism and 17q23-amplified cancers, has emerged as a key regulator of both centrosomes and ncMTOCs. Yet, the mechanism by which TRIM37 achieves enzymatic activation to target these mesoscale structures had remained unknown. Here, we elucidate TRIM37’s activation process, beginning with TRAF domain-directed substrate recognition, progressing through B-box domain-mediated oligomerization, and culminating in RING domain dimerization. Using optogenetics, we demonstrate that TRIM37’s E3 activity is directly coupled to the assembly state of its substrates, activating only when centrosomal proteins cluster into higher-order assemblies resembling MTOCs. This regulatory framework provides a mechanistic basis for understanding TRIM37-driven pathologies and, by echoing TRIM5’s restriction of the HIV capsid, unveils a conserved activation blueprint among TRIM proteins for controlling mesoscale assembly turnover.
3.

Stress pathway outputs are encoded by pH-dependent clustering of kinase components.

blue CRY2clust HEK293 Organelle manipulation
Nat Commun, 5 Aug 2024 DOI: 10.1038/s41467-024-50638-w Link to full text
Abstract: Signal processing by intracellular kinases controls near all biological processes but how signal pathway functions evolve with changed cellular context is poorly understood. Functional specificity of c-Jun N-terminal Kinases (JNK) are partly encoded by signal strength. Here we reveal that intracellular pH (pHi) is a significant component of the JNK network and defines signal response to specific stimuli. We show pHi regulates JNK activity in response to cell stress, with the relationship between pHi and JNK activity dependent on specific stimuli and upstream kinases activated. Using the optogenetic clustering tag CRY2, we show that an increase in pHi promotes the light-induced phase transition of ASK1 to augment JNK activation. While increased pHi similarly promoted CRY2-tagged JNK2 to form light-induced condensates, this attenuated JNK activity. Mathematical modelling of feedback signalling incorporating pHi and differential contributions by ASK1 and JNK2 condensates was sufficient to delineate signal responses to specific stimuli. Taking pHi and ASK1/JNK2 signal contributions into consideration may delineate oncogenic versus tumour suppressive JNK functions and cancer cell drug responses.
4.

Spatiotemporal Control of Inflammatory Lytic Cell Death Through Optogenetic Induction of RIPK3 Oligomerization.

blue CRY2/CIB1 CRY2/CRY2 CRY2clust CRY2olig PtAU1-LOV HEK293T HT-29 NIH/3T3 Cell death
J Mol Biol, 24 May 2024 DOI: 10.1016/j.jmb.2024.168628 Link to full text
Abstract: Necroptosis is a programmed lytic cell death involving active cytokine production and plasma membrane rupture through distinct signaling cascades. However, it remains challenging to delineate this inflammatory cell death pathway at specific signaling nodes with spatiotemporal accuracy. To address this challenge, we developed an optogenetic system, termed Light-activatable Receptor-Interacting Protein Kinase 3 or La-RIPK3, to enable ligand-free, optical induction of RIPK3 oligomerization. La-RIPK3 activation dissects RIPK3-centric lytic cell death through the induction of RIPK3-containing necrosome, which mediates cytokine production and plasma membrane rupture. Bulk RNA-Seq analysis reveals that RIPK3 oligomerization results in partially overlapped gene expression compared to pharmacological induction of necroptosis. Additionally, La-RIPK3 activates separated groups of genes regulated by RIPK3 kinase-dependent and -independent processes. Using patterned light stimulation delivered by a spatial light modulator, we demonstrate precise spatiotemporal control of necroptosis in La-RIPK3-transduced HT-29 cells. Optogenetic control of proinflammatory lytic cell death could lead to the development of innovative experimental strategies to finetune the immune landscape for disease intervention.
5.

Gene Delivery and Analysis of Optogenetic Induction of Lytic Cell Death.

blue CRY2clust CRY2olig HT-29
Curr Protoc, Apr 2024 DOI: 10.1002/cpz1.1023 Link to full text
Abstract: Necroptosis is a form of inflammatory lytic cell death involving active cytokine production and plasma membrane rupture. Progression of necroptosis is tightly regulated in time and space, and its signaling outcomes can shape the local inflammatory environment of cells and tissues. Pharmacological induction of necroptosis is well established, but the diffusive nature of chemical death inducers makes it challenging to study cell-cell communication precisely during necroptosis. Receptor-interacting protein kinase 3, or RIPK3, is a crucial signaling component of necroptosis, acting as a crucial signaling node for both canonical and non-canonical necroptosis. RIPK3 oligomerization is crucial to the formation of the necrosome, which regulates plasma membrane rupture and cytokine production. Commonly used necroptosis inducers can activate multiple downstream signaling pathways, confounding the signaling outcomes of RIPK3-mediated necroptosis. Opsin-free optogenetic techniques may provide an alternative strategy to address this issue. Optogenetics uses light-sensitive protein-protein interaction to modulate cell signaling. Compared to chemical-based approaches, optogenetic strategies allow for spatiotemporal modulation of signal transduction in live cells and animals. We developed an optogenetic system that allows for ligand-free optical control of RIPK3 oligomerization and necroptosis. This article describes the sample preparation, experimental setup, and optimization required to achieve robust optogenetic induction of RIPK3-mediated necroptosis in colorectal HT-29 cells. We expect that this optogenetic system could provide valuable insights into the dynamic nature of lytic cell death. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production of lentivirus encoding the optogenetic RIPK3 system Support Protocol: Quantification of the titer of lentivirus Basic Protocol 2: Culturing, chemical transfection, and lentivirus transduction of HT-29 cells Basic Protocol 3: Optimization of optogenetic stimulation conditions Basic Protocol 4: Time-stamped live-cell imaging of HT-29 lytic cell death Basic Protocol 5: Quantification of HT-29 lytic cell death.
6.

ORAI Ca2+ Channels in Cancers and Therapeutic Interventions.

blue Cryptochromes LOV domains Review
Biomolecules, 29 Mar 2024 DOI: 10.3390/biom14040417 Link to full text
Abstract: The ORAI proteins serve as crucial pore-forming subunits of calcium-release-activated calcium (CRAC) channels, pivotal in regulating downstream calcium-related signaling pathways. Dysregulated calcium homeostasis arising from mutations and post-translational modifications in ORAI can lead to immune disorders, myopathy, cardiovascular diseases, and even cancers. Small molecules targeting ORAI present an approach for calcium signaling modulation. Moreover, emerging techniques like optogenetics and optochemistry aim to offer more precise regulation of ORAI. This review focuses on the role of ORAI in cancers, providing a concise overview of their significance in the initiation and progression of cancers. Additionally, it highlights state-of-the-art techniques for ORAI channel modulation, including advanced optical tools, potent pharmacological inhibitors, and antibodies. These novel strategies offer promising avenues for the functional regulation of ORAI in research and may inspire innovative approaches to cancer therapy targeting ORAI.
7.

Lighting the way: recent developments and applications in molecular optogenetics.

blue green red Cryptochromes LOV domains Phytochromes Review
Curr Opin Biotechnol, 29 Mar 2024 DOI: 10.1016/j.copbio.2024.103126 Link to full text
Abstract: Molecular optogenetics utilizes genetically encoded, light-responsive protein switches to control the function of molecular processes. Over the last two years, there have been notable advances in the development of novel optogenetic switches, their utilization in elucidating intricate signaling pathways, and their progress toward practical applications in biotechnological processes, material sciences, and therapeutic applications. In this review, we discuss these areas, offer insights into recent developments, and contemplate future directions.
8.

Protein supersaturation powers innate immune signaling.

blue CRY2clust HEK293T THP-1 Cell death
bioRxiv, 3 Mar 2024 DOI: 10.1101/2023.03.20.533581 Link to full text
Abstract: Innate immunity protects us in youth but turns against us as we age. The reason for this tradeoff is unclear. Seeking a thermodynamic basis, we focused on death fold domains (DFDs), whose ordered polymerization has been stoichiometrically linked to innate immune signal amplification. We hypothesized that soluble ensembles of DFDs function as phase change batteries that store energy via supersaturation and subsequently release it through nucleated polymerization. Using imaging and FRET-based cytometry to characterize the phase behaviors of all 109 human DFDs, we found that the hubs of innate immune signaling networks encode large nucleation barriers that are intrinsically insulated from cross-pathway activation. We showed via optogenetics that supersaturation drives signal amplification and that the inflammasome is constitutively supersaturated in vivo. Our findings reveal that the soluble “inactive” states of adaptor DFDs function as essential, yet impermanent, kinetic barriers to inflammatory cell death, suggesting a thermodynamic driving force for aging.
9.

Correction to: Increased RTN3 phenocopies nonalcoholic fatty liver disease by inhibiting the AMPK-IDH2 pathway.

blue green near-infrared red UV violet Cryptochromes LOV domains Phytochromes UV receptors Review
MedComm (2020), 4 Feb 2024 DOI: 10.1002/smmd.20230026 Link to full text
Abstract: [This corrects the article DOI: 10.1002/mco2.226.].
10.

Development of an optogenetics tool, Opto-RANK, for control of osteoclast differentiation using blue light.

blue CRY2/CIB1 CRY2clust HEK293T RAW264.7 Signaling cascade control
Sci Rep, 19 Jan 2024 DOI: 10.1038/s41598-024-52056-w Link to full text
Abstract: Optogenetics enables precise regulation of intracellular signaling in target cells. However, the application of optogenetics to induce the differentiation of precursor cells and generate mature cells with specific functions has not yet been fully explored. Here, we focused on osteoclasts, which play an important role in bone remodeling, to develop a novel optogenetics tool, Opto-RANK, which can manipulate intracellular signals involved in osteoclast differentiation and maturation using blue light. We engineered Opto-RANK variants, Opto-RANKc and Opto-RANKm, and generated stable cell lines through retroviral transduction. Differentiation was induced by blue light, and various assays were conducted for functional analysis. Osteoclast precursor cells expressing Opto-RANK differentiated into multinucleated giant cells on light exposure and displayed upregulation of genes normally induced in differentiated osteoclasts. Furthermore, the differentiated cells exhibited bone-resorbing activities, with the possibility of spatial control of the resorption by targeted light illumination. These results suggested that Opto-RANK cells differentiated by light possess the features of osteoclasts, both morphological and functional. Thus, Opto-RANK should be useful for detailed spatiotemporal analysis of intracellular signaling during osteoclast differentiation and the development of new therapies for various bone diseases.
11.

Impact of the clinically approved BTK inhibitors on the conformation of full-length BTK and analysis of the development of BTK resistance mutations in chronic lymphocytic leukemia.

blue CRY2clust MDCK Signaling cascade control Immediate control of second messengers
bioRxiv, 18 Dec 2023 DOI: 10.7554/elife.86727.2 Link to full text
Abstract: Inhibition of Bruton's tyrosine kinase (BTK) has proven to be highly effective in the treatment of B-cell malignancies such as chronic lymphocytic leukemia (CLL), autoimmune disorders and multiple sclerosis. Since the approval of the first BTK inhibitor (BTKi), Ibrutinib, several other inhibitors including Acalabrutinib, Zanubrutinib, Tirabrutinib and Pirtobrutinib have been clinically approved. All are covalent active site inhibitors, with the exception of the reversible active site inhibitor Pirtobrutinib. The large number of available inhibitors for the BTK target creates challenges in choosing the most appropriate BTKi for treatment. Side-by-side comparisons in CLL have shown that different inhibitors may differ in their treatment efficacy. Moreover, the nature of the resistance mutations that arise in patients appears to depend on the specific BTKi administered. We have previously shown that Ibrutinib binding to the kinase active site causes unanticipated long-range effects on the global conformation of BTK (Joseph, R.E., et al., 2020, https://doi.org/10.7554/eLife.60470 ). Here we show that binding of each of the five approved BTKi to the kinase active site brings about distinct allosteric changes that alter the conformational equilibrium of full-length BTK. Additionally, we provide an explanation for the resistance mutation bias observed in CLL patients treated with different BTKi and characterize the mechanism of action of two common resistance mutations: BTK T474I and L528W.
12.

Cardiac optogenetics: shining light on signaling pathways.

blue BLUF domains Cryptochromes LOV domains Review
Pflugers Arch, 14 Dec 2023 DOI: 10.1007/s00424-023-02892-y Link to full text
Abstract: In the early 2000s, the field of neuroscience experienced a groundbreaking transformation with the advent of optogenetics. This innovative technique harnesses the properties of naturally occurring and genetically engineered rhodopsins to confer light sensitivity upon target cells. The remarkable spatiotemporal precision offered by optogenetics has provided researchers with unprecedented opportunities to dissect cellular physiology, leading to an entirely new level of investigation. Initially revolutionizing neuroscience, optogenetics quickly piqued the interest of the wider scientific community, and optogenetic applications were expanded to cardiovascular research. Over the past decade, researchers have employed various optical tools to observe, regulate, and steer the membrane potential of excitable cells in the heart. Despite these advancements, achieving control over specific signaling pathways within the heart has remained an elusive goal. Here, we review the optogenetic tools suitable to control cardiac signaling pathways with a focus on GPCR signaling, and delineate potential applications for studying these pathways, both in healthy and diseased hearts. By shedding light on these exciting developments, we hope to contribute to the ongoing progress in basic cardiac research to facilitate the discovery of novel therapeutic possibilities for treating cardiovascular pathologies.
13.

Optogenetic STING clustering system through nanobody-fused photoreceptor for innate immune regulation.

blue CRY2clust A-172 HeLa Signaling cascade control
Sens Actuators B Chem, 20 Oct 2023 DOI: 10.1016/j.snb.2023.134822 Link to full text
Abstract: Stimulator of interferon gene (STING) serves as a key mediator for regulating innate immune response. Despite the dynamic process of STING activation, the role of STING clustering in the STING-mediated immune response remains unclear due to the lack of a suitable tool. We developed an innovative optogenetic STING clustering system, OptoSTING, that employs a nanobody-fused photoreceptor-driven technique to achieve light-responsive STING clustering. By optimizing the protein configuration, we identified an optimal OptoSTING system that induced efficient, robust, and reversible clustering of STING upon blue-light illumination. We confirmed that light-induced STING clustering required ER exit to trigger the stimulation of type I interferon response because only cytosolic fragment of OptoSTING (cyt-OptoSTING) enabled to initiate immune response, not full-length OptoSTING. The precise and temporally controlled clustering by cyt-OptoSTING revealed that STING clustering facilitated the STING signaling pathway through puncta formation of IRF3 as downstream effector protein.
14.

Visual quantification of prostaglandin E2 discharge from a single cell.

blue CRY2clust HeLa MDCK Immediate control of second messengers
Cell Struct Funct, 7 Oct 2023 DOI: 10.1247/csf.23047 Link to full text
Abstract: Calcium transients drive cells to discharge prostaglandin E2 (PGE2). We visualized PGE2-induced protein kinase A (PKA) activation and quantitated PGE2 secreted from a single cell by combining fluorescence microscopy and a simulation model. For this purpose, we first prepared PGE2-producer cells that express either an optogenetic or a chemogenetic calcium channel stimulator: OptoSTIM1 or Gq-DREADD, respectively. Second, we prepared reporter cells expressing the Gs-coupled PGE2 reporter EP2 and the PKA biosensor Booster-PKA, which is based on the principle of Förster resonance energy transfer (FRET). Upon the stimulation-induced triggering of calcium transients, a single producer cell discharges PGE2 to stimulate PKA in the surrounding reporter cells. Due to the flow of the medium, the PKA-activated area exhibited a comet-like smear when HeLa cells were used. In contrast, radial PKA activation was observed when confluent MDCK cells were used, indicating that PGE2 diffusion was restricted to the basolateral space. By fitting the radius of the PKA-activated area to a simulation model based on simple diffusion, we estimated that a single HeLa cell secretes 0.25 fmol PGE2 upon a single calcium transient to activate PKA in more than 1000 neighboring cells. This model also predicts that the PGE2 discharge rate is comparable to the diffusion rate. Thus, our method quantitatively envisions that a single calcium transient affects more than 1000 neighboring cells via PGE2.Key words: prostaglandin E2, imaging, intercellular communication, biosensor, quantification.
15.

Optogenetic engineering of STING signaling allows remote immunomodulation to enhance cancer immunotherapy.

blue CRY2/CRY2 CRY2clust HEK293T J774A.1 mouse in vivo primary mouse BMDCs Signaling cascade control Endogenous gene expression
Nat Commun, 6 Sep 2023 DOI: 10.1038/s41467-023-41164-2 Link to full text
Abstract: The cGAS-STING signaling pathway has emerged as a promising target for immunotherapy development. Here, we introduce a light-sensitive optogenetic device for control of the cGAS/STING signaling to conditionally modulate innate immunity, called 'light-inducible SMOC-like repeats' (LiSmore). We demonstrate that photo-activated LiSmore boosts dendritic cell (DC) maturation and antigen presentation with high spatiotemporal precision. This non-invasive approach photo-sensitizes cytotoxic T lymphocytes to engage tumor antigens, leading to a sustained antitumor immune response. When combined with an immune checkpoint blocker (ICB), LiSmore improves antitumor efficacy in an immunosuppressive lung cancer model that is otherwise unresponsive to conventional ICB treatment. Additionally, LiSmore exhibits an abscopal effect by effectively suppressing tumor growth in a distal site in a bilateral mouse model of melanoma. Collectively, our findings establish the potential of targeted optogenetic activation of the STING signaling pathway for remote immunomodulation in mice.
16.

Selective induction of programmed cell death using synthetic biology tools.

blue green near-infrared red UV violet BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Semin Cell Dev Biol, 17 Aug 2023 DOI: 10.1016/j.semcdb.2023.07.012 Link to full text
Abstract: Regulated cell death (RCD) controls the removal of dispensable, infected or malignant cells, and is thus essential for development, homeostasis and immunity of multicellular organisms. Over the last years different forms of RCD have been described (among them apoptosis, necroptosis, pyroptosis and ferroptosis), and the cellular signaling pathways that control their induction and execution have been characterized at the molecular level. It has also become apparent that different forms of RCD differ in their capacity to elicit inflammation or an immune response, and that RCD pathways show a remarkable plasticity. Biochemical and genetic studies revealed that inhibition of a given pathway often results in the activation of back-up cell death mechanisms, highlighting close interconnectivity based on shared signaling components and the assembly of multivalent signaling platforms that can initiate different forms of RCD. Due to this interconnectivity and the pleiotropic effects of 'classical' cell death inducers, it is challenging to study RCD pathways in isolation. This has led to the development of tools based on synthetic biology that allow the targeted induction of RCD using chemogenetic or optogenetic methods. Here we discuss recent advances in the development of such toolset, highlighting their advantages and limitations, and their application for the study of RCD in cells and animals.
17.

Optogenetic control of the integrated stress response reveals proportional encoding and the stress memory landscape.

blue CRY2clust CRY2olig H4 HEK293T U-2 OS Signaling cascade control
Cell Syst, 19 Jul 2023 DOI: 10.1016/j.cels.2023.06.001 Link to full text
Abstract: The integrated stress response (ISR) is a conserved signaling network that detects aberrations and computes cellular responses. Dissecting these computations has been difficult because physical and chemical inducers of stress activate multiple parallel pathways. To overcome this challenge, we engineered a photo-switchable control over the ISR sensor kinase PKR (opto-PKR), enabling virtual, on-target activation. Using light to control opto-PKR dynamics, we traced information flow through the transcriptome and for key downstream ISR effectors. Our analyses revealed a biphasic, proportional transcriptional response with two dynamic modes, transient and gradual, that correspond to adaptive and terminal outcomes. We then constructed an ordinary differential equation (ODE) model of the ISR, which demonstrated the dependence of future stress responses on past stress. Finally, we tested our model using high-throughput light-delivery to map the stress memory landscape. Our results demonstrate that cells encode information in stress levels, durations, and the timing between encounters. A record of this paper's transparent peer review process is included in the supplemental information.
18.

Advanced human iPSC-based preclinical model for Parkinson's disease with optogenetic alpha-synuclein aggregation.

blue CRY2clust human IPSCs Cell death
Cell Stem Cell, 19 Jun 2023 DOI: 10.1016/j.stem.2023.05.015 Link to full text
Abstract: Human induced pluripotent stem cells (hiPSCs) offer advantages for disease modeling and drug discovery. However, recreating innate cellular pathologies, particularly in late-onset neurodegenerative diseases with accumulated protein aggregates including Parkinson's disease (PD), has been challenging. To overcome this barrier, we developed an optogenetics-assisted α-synuclein (α-syn) aggregation induction system (OASIS) that rapidly induces α-syn aggregates and toxicity in PD hiPSC-midbrain dopaminergic neurons and midbrain organoids. Our OASIS-based primary compound screening with SH-SY5Y cells identified 5 candidates that were secondarily validated with OASIS PD hiPSC-midbrain dopaminergic neurons and midbrain organoids, leading us to finally select BAG956. Furthermore, BAG956 significantly reverses characteristic PD phenotypes in α-syn preformed fibril models in vitro and in vivo by promoting autophagic clearance of pathological α-syn aggregates. Following the FDA Modernization Act 2.0's emphasis on alternative non-animal testing methods, our OASIS can serve as an animal-free preclinical test model (newly termed "nonclinical test") for the synucleinopathy drug development.
19.

LOV2-based photoactivatable CaMKII and its application to single synapses: Local Optogenetics.

blue Cryptochromes LOV domains Review
Biophys Physicobiol, 6 Jun 2023 DOI: 10.2142/biophysico.bppb-v20.0027 Link to full text
Abstract: Optogenetic techniques offer a high spatiotemporal resolution to manipulate cellular activity. For instance, Channelrhodopsin-2 with global light illumination is the most widely used to control neuronal activity at the cellular level. However, the cellular scale is much larger than the diffraction limit of light (<1 μm) and does not fully exploit the features of the "high spatial resolution" of optogenetics. For instance, until recently, there were no optogenetic methods to induce synaptic plasticity at the level of single synapses. To address this, we developed an optogenetic tool named photoactivatable CaMKII (paCaMKII) by fusing a light-sensitive domain (LOV2) to CaMKIIα, which is a protein abundantly expressed in neurons of the cerebrum and hippocampus and essential for synaptic plasticity. Combining photoactivatable CaMKII with two-photon excitation, we successfully activated it in single spines, inducing synaptic plasticity (long-term potentiation) in hippocampal neurons. We refer to this method as "Local Optogenetics", which involves the local activation of molecules and measurement of cellular responses. In this review, we will discuss the characteristics of LOV2, the recent development of its derivatives, and the development and application of paCaMKII.
20.

Light-activated macromolecular phase separation modulates transcription by reconfiguring chromatin interactions.

blue CRY2clust HeLa Transgene expression Endogenous gene expression
Sci Adv, 31 Mar 2023 DOI: 10.1126/sciadv.adg1123 Link to full text
Abstract: Biomolecular condensates participate in the regulation of gene transcription, yet the relationship between nuclear condensation and transcriptional activation remains elusive. Here, we devised a biotinylated CRISPR-dCas9-based optogenetic method, light-activated macromolecular phase separation (LAMPS), to enable inducible formation, affinity purification, and multiomic dissection of nuclear condensates at the targeted genomic loci. LAMPS-induced condensation at enhancers and promoters activates endogenous gene transcription by chromatin reconfiguration, causing increased chromatin accessibility and de novo formation of long-range chromosomal loops. Proteomic profiling of light-induced condensates by dCas9-mediated affinity purification uncovers multivalent interaction-dependent remodeling of macromolecular composition, resulting in the selective enrichment of transcriptional coactivators and chromatin structure proteins. Our findings support a model whereby the formation of nuclear condensates at native genomic loci reconfigures chromatin architecture and multiprotein assemblies to modulate gene transcription. Hence, LAMPS facilitates mechanistic interrogation of the relationship between nuclear condensation, genome structure, and gene transcription in living cells.
21.

Calcium transients trigger switch-like discharge of prostaglandin E2 (PGE2) in an ERK-dependent manner.

blue CRY2clust MDCK Immediate control of second messengers
bioRxiv, 23 Feb 2023 DOI: 10.1101/2023.02.01.526734 Link to full text
Abstract: Prostaglandin E2 (PGE2) is a key player in a plethora of physiological and pathological events. Nevertheless, little is known about the dynamics of PGE2 secretion from a single cell and its effect on the neighboring cells. Here, by observing confluent Madin-Darby canine kidney (MDCK) epithelial cells expressing fluorescent biosensors we demonstrate that calcium transients in a single cell cause PGE2-mediated radial spread of PKA activation (RSPA) in neighboring cells. By in vivo imaging, RSPA was also observed in the basal layer of the mouse epidermis. Experiments with an optogenetic tool revealed a switch-like PGE2 discharge in response to the increasing cytoplasmic Ca2+ concentrations. The cell density of MDCK cells correlated with the frequencies of calcium transients and the following RSPA. The ERK MAP kinase activation also enhanced the frequency of RSPA in MDCK and in vivo. Thus, the PGE2 discharge is regulated temporally by calcium transients and ERK activity.
22.

Precise modulation of embryonic development through optogenetics.

blue cyan violet BLUF domains Cryptochromes Fluorescent proteins LOV domains Review
Genesis, 7 Dec 2022 DOI: 10.1002/dvg.23505 Link to full text
Abstract: The past decade has witnessed enormous progress in optogenetics, which uses photo-sensitive proteins to control signal transduction in live cells and animals. The ever-increasing amount of optogenetic tools, however, could overwhelm the selection of appropriate optogenetic strategies. In this work, we summarize recent progress in this emerging field and highlight the application of opsin-free optogenetics in studying embryonic development, focusing on new insights gained into optical induction of morphogenesis, cell polarity, cell fate determination, tissue differentiation, neuronal regeneration, synaptic plasticity, and removal of cells during development.
23.

Proteomic mapping and optogenetic manipulation of membrane contact sites.

blue Cryptochromes LOV domains Review
Biochem J, 16 Sep 2022 DOI: 10.1042/bcj20220382 Link to full text
Abstract: Membrane contact sites (MCSs) mediate crucial physiological processes in eukaryotic cells, including ion signaling, lipid metabolism, and autophagy. Dysregulation of MCSs is closely related to various diseases, such as type 2 diabetes mellitus (T2DM), neurodegenerative diseases, and cancers. Visualization, proteomic mapping and manipulation of MCSs may help the dissection of the physiology and pathology MCSs. Recent technical advances have enabled better understanding of the dynamics and functions of MCSs. Here we present a summary of currently known functions of MCSs, with a focus on optical approaches to visualize and manipulate MCSs, as well as proteomic mapping within MCSs.
24.

Recent advances in cellular optogenetics for photomedicine.

blue cyan green near-infrared red UV violet PhyB/PIF6 BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Adv Drug Deliv Rev, 16 Jul 2022 DOI: 10.1016/j.addr.2022.114457 Link to full text
Abstract: Since the successful introduction of exogenous photosensitive proteins, channelrhodopsin, to neurons, optogenetics has enabled substantial understanding of profound brain function by selectively manipulating neural circuits. In an optogenetic system, optical stimulation can be precisely delivered to brain tissue to achieve regulation of cellular electrical activity with unprecedented spatio-temporal resolution in living organisms. In recent years, the development of various optical actuators and novel light-delivery techniques has greatly expanded the scope of optogenetics, enabling the control of other signal pathways in non-neuronal cells for different biomedical applications, such as phototherapy and immunotherapy. This review focuses on the recent advances in optogenetic regulation of cellular activities for photomedicine. We discuss emerging optogenetic tools and light-delivery platforms, along with a survey of optogenetic execution in mammalian and microbial cells.
25.

Engineering of optogenetic devices for biomedical applications in mammalian synthetic biology.

blue near-infrared red UV violet BLUF domains Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Eng Biol, 7 Jul 2022 DOI: 10.1049/enb2.12022 Link to full text
Abstract: Gene- and cell-based therapies are the next frontiers in the field of medicine. Both are transformative and innovative therapies; however, a lack of safety data limits the translation of such promising technologies to the clinic. Improving the safety and promoting the clinical translation of these therapies can be achieved by tightly regulating the release and delivery of therapeutic outputs. In recent years, the rapid development of optogenetic technology has provided opportunities to develop precision-controlled gene- and cell-based therapies, in which light is introduced to precisely and spatiotemporally manipulate the behaviour of genes and cells. This review focuses on the development of optogenetic tools and their applications in biomedicine, including photoactivated genome engineering and phototherapy for diabetes and tumours. The prospects and challenges of optogenetic tools for future clinical applications are also discussed.
Submit a new publication to our database