Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

A dual light-controlled co-culture system enables the regulation of population composition.

blue green CcaS/CcaR YtvA E. coli Transgene expression Multichromatic
Synth Syst Biotechnol, 19 Feb 2025 DOI: 10.1016/j.synbio.2025.02.012 Link to full text
Abstract: With the development of metabolic engineering, increasing requirements for efficient microbial biosynthesis call for establishment of multi-strain co-culture system. Dynamic regulation of population ratios is crucial for optimizing bioproduction performance. Optogenetic systems with high universality and flexibility have the potential to realize dynamic control of population proportion. In this study, we utilized an optimized chromatic acclimation sensor/regulator (CcaS/R) system and a blue light-activated YF1-FixJ-PhlF system as induction modules. A pair of orthogonal quorum sensing systems and a toxin-antitoxin system were employed as communication module and effector module, respectively. By integrating these modules, we developed a dual light-controlled co-culture system that enables dynamic regulation of population ratios. This co-culture system provides a universal toolkit for applications in metabolic engineering and synthetic biology.
2.

Environment signal dependent biocontainment systems for engineered organisms: Leveraging triggered responses and combinatorial systems.

blue cyan near-infrared red UV Cryptochromes Fluorescent proteins LOV domains Phytochromes UV receptors Review
Synth Syst Biotechnol, 20 Dec 2024 DOI: 10.1016/j.synbio.2024.12.005 Link to full text
Abstract: As synthetic biology advances, the necessity for robust biocontainment strategies for genetically engineered organisms (GEOs) grows increasingly critical to mitigate biosafety risks related to their potential environmental release. This paper aims to evaluate environment signal-dependent biocontainment systems for engineered organisms, focusing specifically on leveraging triggered responses and combinatorial systems. There are different types of triggers—chemical, light, temperature, and pH—this review illustrates how these systems can be designed to respond to environmental signals, ensuring a higher safety profile. It also focuses on combinatorial biocontainment to avoid consequences of unintended GEO release into an external environment. Case studies are discussed to demonstrate the practical applications of these systems in real-world scenarios.
Submit a new publication to our database