Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Optogenetic reversible knocksideways, laser ablation, and photoactivation on the mitotic spindle in human cells.

blue iLID U-2 OS
Methods Cell Biol, 26 Apr 2018 DOI: 10.1016/bs.mcb.2018.03.024 Link to full text
Abstract: At the onset of mitosis, cells assemble the mitotic spindle, a dynamic micromachine made of microtubules and associated proteins. Although most of these proteins have been identified, it is still unknown how their collective behavior drives spindle formation and function. Over the last decade, RNA interference has been the main tool for revealing the role of spindle proteins. However, the effects of this method are evident only after a longer time period, leading to difficulties in the interpretation of phenotypes. Optogenetics is a novel technology that enables fast, reversible, and precise control of protein activity by utilization of light. In this chapter, we present an optogenetic knocksideways method for rapid and reversible translocation of proteins from the mitotic spindle to mitochondria using blue light. Furthermore, we discuss other optical approaches, such as laser ablation of microtubule bundles in the spindle and creation of reference marks on the bundles by photoactivation of photoactivatable GFP. Finally, we show how different optical perturbations can be combined in order to acquire deeper understanding of the mechanics of mitosis.
2.

Optogenetic inhibition of apical constriction during Drosophila embryonic development.

blue CRY2/CIB1 D. melanogaster in vivo
Methods Cell Biol, 23 Nov 2016 DOI: 10.1016/bs.mcb.2016.10.007 Link to full text
Abstract: Morphogenesis of multicellular organisms is driven by changes in cell behavior, which happen at precise locations and defined developmental stages. Therefore, the studying of morphogenetic events would greatly benefit from tools that allow the perturbation of cell activity with spatial and temporal precision. We recently developed an optogenetic approach to modulate cell contractility with cellular precision and on fast (seconds) timescales during Drosophila embryogenesis. We present here a protocol to handle genetically engineered photosensitive Drosophila embryos and achieve light-mediated inhibition of apical constriction during tissue invagination. The possibility to modulate the levels of optogenetic activation at different laser powers makes this method suited also for studying how mechanical stresses are sensed and interpreted in vivo. Given the conserved function of cell contractility during animal development, the application of this method to other morphogenetic processes will facilitate our understanding of tissue mechanics and cell-cell interaction during morphogenesis.
Submit a new publication to our database