Showing 1 - 4 of 4 results
1.
Ultrafast Primary Dynamics and Isomerization Mechanism of a Far-Red Sensing Cyanobacteriochrome.
-
Niu, K
-
Wang, D
-
Zhang, Y
-
Biju, L
-
Liu, N
-
Wang, X
-
Wang, L
-
Ren, Z
-
Lu, F
-
Yang, X
-
Zhong, D
Abstract:
Far-red cyanobacteriochromes (CBCRs) are bilin-based photosensory proteins that promise to be novel optical agents in optogenetics and deep tissue imaging. Recent structural studies of a far-red CBCR 2551g3 have revealed a unique all-Z,syn chromophore conformation in the far-red-absorbing Pfr state. Understanding the photoswitching mechanism through bilin photoisomerization is important for developing novel biomedical applications. Here, we employ femtosecond spectroscopy and site-directed mutagenesis to systematically characterize the dynamics of wild-type 2551g3 and four critical mutants in the 15Z Pfr state. We captured local relaxations in several picoseconds and isomerization dynamics in hundreds of picoseconds. Most mutants exhibited faster local relaxation, while their twisting dynamics and photoproducts depend on specific protein-chromophore interactions around the D-ring and C-ring. These results collectively reveal a unique dynamic pattern of excited-state evolution arising from a relatively rigid protein environment, thereby elucidating the molecular mechanism of Pfr-state photoisomerization in far-red CBCRs.
2.
Open-Closed Structure of Light Responsive Protein LOV2 Regulates its Molecular Interaction with Binding Partner.
Abstract:
Optogenetic approaches have broad applications including regulating cell signalling and gene expression. Photo-responsive protein LOV2 and its binding partner ZDK represent an important protein caging/uncaging optogenetic system. Herein, we combine time-resolved small angle X-ray scattering (SAXS) and atomic force microscopy (AFM) to reveal different structural states of LOV2 and the light-controlled mechanism of interaction between LOV2 and ZDK. In response to blue light within a time frame of ca. 70 s, LOV2 has a significantly higher value of radius of gyration Rg (29.6± 0.3 Å vs 26.4± 0.4 Å) than its dark state, suggesting unwinding of the C-terminal Jα-helix into an open structure. Atomic force microscopy was used to characterise molecular interactions of LOV2 in open and closed states with ZDK at a single molecule level. The closed state of LOV2 enables strong binding with ZDK, characterised by 60-fold lower dissociation rate and ~1.5 times higher activation energy barrier than its open state. In combination, these data support a light-switching mechanism that is modulated by the proximity of multiple binding sites of LOV2 for ZDK.
3.
Unfolding of the C-Terminal Jα Helix in the LOV2 Photoreceptor Domain Observed by Time-Resolved Vibrational Spectroscopy.
Abstract:
Light-triggered reactions of biological photoreceptors have gained immense attention for their role as molecular switches in their native organisms and for optogenetic application. The light, oxygen, and voltage 2 (LOV2) sensing domain of plant phototropin binds a C-terminal Jα helix that is docked on a β-sheet and unfolds upon light absorption by the flavin mononucleotide (FMN) chromophore. In this work, the signal transduction pathway of LOV2 from Avena sativa was investigated using time-resolved infrared spectroscopy from picoseconds to microseconds. In D2O buffer, FMN singlet-to-triplet conversion occurs in 2 ns and formation of the covalent cysteinyl-FMN adduct in 10 μs. We observe a two-step unfolding of the Jα helix: The first phase occurs concomitantly with Cys-FMN covalent adduct formation in 10 μs, along with hydrogen-bond rupture of the FMN C4═O with Gln-513, motion of the β-sheet, and an additional helical element. The second phase occurs in approximately 240 μs. The final spectrum at 500 μs is essentially identical to the steady-state light-minus-dark Fourier transform infrared spectrum, indicating that Jα helix unfolding is complete on that time scale.
4.
Ubiquitous Structural Signaling in Bacterial Phytochromes.
-
Björling, A
-
Berntsson, O
-
Takala, H
-
Gallagher, KD
-
Patel, H
-
Gustavsson, E
-
St Peter, R
-
Duong, P
-
Nugent, A
-
Zhang, F
-
Berntsen, P
-
Appio, R
-
Rajkovic, I
-
Lehtivuori, H
-
Panman, MR
-
Hoernke, M
-
Niebling, S
-
Harimoorthy, R
-
Lamparter, T
-
Stojković, EA
-
Ihalainen, JA
-
Westenhoff, S
Abstract:
The phytochrome family of light-switchable proteins has long been studied by biochemical, spectroscopic and crystallographic means, while a direct probe for global conformational signal propagation has been lacking. Using solution X-ray scattering, we find that the photosensory cores of several bacterial phytochromes undergo similar large-scale structural changes upon red-light excitation. The data establish that phytochromes with ordinary and inverted photocycles share a structural signaling mechanism and that a particular conserved histidine, previously proposed to be involved in signal propagation, in fact tunes photoresponse.