Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

OPTICS: An interactive online platform for photosensory and bio-functional proteins in optogenetic systems.

in silico
Comput Biol Med, 5 Jun 2024 DOI: 10.1016/j.compbiomed.2024.108687 Link to full text
Abstract: High-precise modulation of bio-functional proteins related to signaling is crucial in life sciences and human health. The cutting-edge technology of optogenetics, which combines optical method with genetically encoded protein expression, pioneered new pathways for the control of cellular bio-functional proteins (CPs) using optogenetic tools (OTs) in spatial and temporal. Over the past decade, hundreds of optogenetic systems (OSs) have been developed for various applications from living cells to freely moving organisms. However, no database has been constructed to comprehensively provide the valuable information of OSs yet. In this work, a new database named OPTICS (an interactive online platform for photosensory and bio-functional proteins in optogenetic systems) is introduced. Our OPTICS is unique in (i) systematically describing diverse OSs from the perspective of photoreceptor-based classification and mechanism of action, (ii) featuring the detailed biophysical properties and functional data of OSs, (iii) providing the interaction between OT and CP for each OS referring to distinct applications in research, diagnosis, and therapy, and (iv) enabling a light response property-based search against all OSs in the database. Since the information on OSs is essential for rapid and predictable design of optogenetic controls, the comprehensive data provided in OPTICS lay a solid foundation for the future development of novel OSs. OPTICS is freely accessible without login requirement at https://idrblab.org/optics/.
2.

Network analysis of chromophore binding site in LOV domain.

blue LOV domains Background
Comput Biol Med, 5 May 2023 DOI: 10.1016/j.compbiomed.2023.106996 Link to full text
Abstract: Photoreceptor proteins are versatile toolbox for developing biosensors for optogenetic applications. These molecular tools get activated upon illumination of blue light, which in turn offers a non-invasive method for gaining high spatiotemporal resolution and precise control of cellular signal transduction. The Light-Oxygen-Voltage (LOV) domain family of proteins is a well-recognized system for constructing optogenetic devices. Translation of these proteins into efficient cellular sensors is possible by tuning their photochemistry lifetime. However, the bottleneck is the need for more understanding of the relationship between the protein environment and photocycle kinetics. Significantly, the effect of the local environment also modulates the electronic structure of chromophore, which perturbs the electrostatic and hydrophobic interaction within the binding site. This work highlights the critical factors hidden in the protein networks, linking with their experimental photocycle kinetics. It presents an opportunity to quantitatively examine the alternation in chromophore's equilibrium geometry and identify details which have substantial implications in designing synthetic LOV constructs with desirable photocycle efficiency.
Submit a new publication to our database