Showing 1 - 7 of 7 results
1.
A disordered tether to iLID improves photoswitchable protein patterning on model membranes.
Abstract:
Reversible protein patterning on model membranes is important to reproduce spatiotemporal protein dynamics in vitro. An engineered version of iLID, disiLID, with a disordered domain as a membrane tether improves the recruitment of Nano under blue light and the reversibility in the dark, which enables protein patterning on membranes with higher spatiotemporal precision.
2.
Circularly permuted AsLOV2 as an optogenetic module for engineering photoswitchable peptides.
Abstract:
We re-engineered a commonly-used light-sensing protein, AsLOV2, using a circular permutation strategy to allow photoswitchable control of the C-terminus of a peptide. We demonstrate that the circularly permuted AsLOV2 can be used on its own or together with the original AsLOV2 for enhanced caging. In summary, circularly permuted AsLOV2 could expand the engineering capabilities of optogenetic tools.
3.
Light controlled cell-to-cell adhesion and chemical communication in minimal synthetic cells.
Abstract:
Decorating GUVs, used as minimal synthetic cell models, with photoswitchable proteins allows controlling the adhesion between them and their assembly into multicellular structures with light. Thereby, the chemical communication between a sender and a receiver GUV, which strongly depends on their spatial proximity, can also be photoregulated.
4.
Dynamic blue light-switchable protein patterns on giant unilamellar vesicles.
Abstract:
The blue light-dependent interaction between the proteins iLID and Nano allows recruiting and patterning proteins on GUV membranes, which thereby capture key features of patterns observed in nature. This photoswitchable protein interaction provides non-invasive, reversible and dynamic control over protein patterns of different sizes with high specificity and spatiotemporal resolution.
5.
Optically controlled reversible protein hydrogels based on photoswitchable fluorescent protein Dronpa.
Abstract:
Exploiting the optically controlled association and dissociation behavior of a photoswitchable fluorescent protein, Dronpa145N, here we demonstrate the engineering of an optically switchable reversible protein hydrogel using Dronpa145N-based protein building blocks. Our results open the possibility to optically tune the mechanical, chemical and structural properties of protein hydrogels.
6.
Synthesis of phycocyanobilin in mammalian cells.
Abstract:
The chromophore 3-Z phycocyanobilin (PCB, (2R,3Z)-8,12-bis(2-carboxyethyl)-18-ethyl-3-ethylidene-2,7,13,17-tetramethyl-2,3-dihydrobilin-1,19(21H,24H)-dione) mediates red and far-red light perception in natural and synthetic biological systems. Here we describe a PCB synthesis strategy in mammalian cells. We optimize the production by co-localizing the biocatalysts to the substrate source, by coordinating the availability of the biocatalysts and by reducing the degradation of the reaction product. We show that the resulting PCB levels of 2 μM are sufficient to sustain the functionality of red light-responsive optogenetic tools suitable for the light-inducible control of gene expression in mammalian cells.
7.
Light-inducible activation of target mRNA translation in mammalian cells.
Abstract:
A genetically encoded optogenetic system was constructed that activates mRNA translation in mammalian cells in response to light. Blue light induces the reconstitution of an RNA binding domain and a translation initiation domain, thereby activating target mRNA translation downstream of the binding sites.