Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 7 of 7 results
1.

A disordered tether to iLID improves photoswitchable protein patterning on model membranes.

blue iLID in vitro
Chem Commun (Camb), 6 Apr 2023 DOI: 10.1039/d3cc00709j Link to full text
Abstract: Reversible protein patterning on model membranes is important to reproduce spatiotemporal protein dynamics in vitro. An engineered version of iLID, disiLID, with a disordered domain as a membrane tether improves the recruitment of Nano under blue light and the reversibility in the dark, which enables protein patterning on membranes with higher spatiotemporal precision.
2.

Circularly permuted AsLOV2 as an optogenetic module for engineering photoswitchable peptides.

blue AsLOV2 cpLOV2 iLID HEK293T S. cerevisiae
Chem Commun (Camb), 22 Jul 2021 DOI: 10.1039/d1cc02643g Link to full text
Abstract: We re-engineered a commonly-used light-sensing protein, AsLOV2, using a circular permutation strategy to allow photoswitchable control of the C-terminus of a peptide. We demonstrate that the circularly permuted AsLOV2 can be used on its own or together with the original AsLOV2 for enhanced caging. In summary, circularly permuted AsLOV2 could expand the engineering capabilities of optogenetic tools.
3.

Light controlled cell-to-cell adhesion and chemical communication in minimal synthetic cells.

blue iLID in vitro Extracellular optogenetics
Chem Commun (Camb), 22 Jul 2019 DOI: 10.1039/c9cc04768a Link to full text
Abstract: Decorating GUVs, used as minimal synthetic cell models, with photoswitchable proteins allows controlling the adhesion between them and their assembly into multicellular structures with light. Thereby, the chemical communication between a sender and a receiver GUV, which strongly depends on their spatial proximity, can also be photoregulated.
4.

Dynamic blue light-switchable protein patterns on giant unilamellar vesicles.

blue iLID in vitro Extracellular optogenetics
Chem Commun (Camb), 23 Jan 2018 DOI: 10.1039/c7cc08758f Link to full text
Abstract: The blue light-dependent interaction between the proteins iLID and Nano allows recruiting and patterning proteins on GUV membranes, which thereby capture key features of patterns observed in nature. This photoswitchable protein interaction provides non-invasive, reversible and dynamic control over protein patterns of different sizes with high specificity and spatiotemporal resolution.
5.

Optically controlled reversible protein hydrogels based on photoswitchable fluorescent protein Dronpa.

cyan Dronpa145N in vitro Extracellular optogenetics
Chem Commun (Camb), 23 Nov 2017 DOI: 10.1039/c7cc06991j Link to full text
Abstract: Exploiting the optically controlled association and dissociation behavior of a photoswitchable fluorescent protein, Dronpa145N, here we demonstrate the engineering of an optically switchable reversible protein hydrogel using Dronpa145N-based protein building blocks. Our results open the possibility to optically tune the mechanical, chemical and structural properties of protein hydrogels.
6.

Synthesis of phycocyanobilin in mammalian cells.

red PhyB/PIF6 CHO-K1
Chem Commun (Camb), 11 Oct 2013 DOI: 10.1039/c3cc45065a Link to full text
Abstract: The chromophore 3-Z phycocyanobilin (PCB, (2R,3Z)-8,12-bis(2-carboxyethyl)-18-ethyl-3-ethylidene-2,7,13,17-tetramethyl-2,3-dihydrobilin-1,19(21H,24H)-dione) mediates red and far-red light perception in natural and synthetic biological systems. Here we describe a PCB synthesis strategy in mammalian cells. We optimize the production by co-localizing the biocatalysts to the substrate source, by coordinating the availability of the biocatalysts and by reducing the degradation of the reaction product. We show that the resulting PCB levels of 2 μM are sufficient to sustain the functionality of red light-responsive optogenetic tools suitable for the light-inducible control of gene expression in mammalian cells.
7.

Light-inducible activation of target mRNA translation in mammalian cells.

blue CRY2/CIB1 HEK293T
Chem Commun (Camb), 28 Sep 2013 DOI: 10.1039/c3cc44866e Link to full text
Abstract: A genetically encoded optogenetic system was constructed that activates mRNA translation in mammalian cells in response to light. Blue light induces the reconstitution of an RNA binding domain and a translation initiation domain, thereby activating target mRNA translation downstream of the binding sites.
Submit a new publication to our database