Showing 1 - 5 of 5 results
1.
Blue light-mediated gene expression as a promising strategy to reduce antibiotic resistance in Escherichia coli.
Abstract:
The discovery of antibiotics has noticeably promoted the development of human civilization; however, antibiotic resistance in bacteria caused by abusing and overusing greatly challenges human health and food safety. Considering the worsening situation, it is an urgent demand to develop emerging nontraditional technologies or methods to address this issue. With the expanding of synthetic biology, optogenetics exhibits a tempting prospect for precisely regulating gene expression in many fields. Consequently, it is attractive to employ optogenetics to reduce the risk of antibiotic resistance. Here, a blue light-controllable gene expression system was established in Escherichia coli based on a photosensitive DNA-binding protein (EL222). Further, this strategy was successfully applied to repress the expression of β-lactamase gene (bla) using blue light illumination, resulting a dramatic reduction of ampicillin resistance in engineered E. coli. Moreover, blue light was utilized to induce the expression of the mechanosensitive channel of large conductance (MscL), triumphantly leading to the increase of streptomycin susceptibility in engineered E. coli. Finally, the increased susceptibility of ampicillin and streptomycin was simultaneously induced by blue light in the same E. coli cell, revealing the excellent potential of this strategy in controlling multidrug-resistant (MDR) bacteria. As a proof of concept, our work demonstrates that light can be used as an alternative tool to prolong the use period of common antibiotics without developing new antibiotics. And this novel strategy based on optogenetics shows a promising foreground to combat antibiotic resistance in the future.
2.
Light-induced fermenter production of derivatives of the sweet protein monellin is maximized in prestationary Saccharomyces cerevisiae cultures.
Abstract:
Optogenetics has great potential for biotechnology and metabolic engineering due to the cost-effective control of cellular activities. The usage of optogenetics techniques for the biosynthesis of bioactive molecules ensures reduced costs and enhanced regulatory possibilities. This requires development of efficient methods for light-delivery during a production process in a fermenter. Here, we benchmarked the fermenter production of a low-caloric sweetener in Saccharomyces cerevisiae with optogenetic tools against the production in small scale cell culture flasks. An expression system based on the light-controlled interaction between Cry2 and Cib1 was used for sweet-protein production. Optimization of the fermenter process was achieved by increasing the light-flux during the production phase to circumvent shading by yeast cells at high densities. Maximal amounts of the sweet-protein were produced in a pre-stationary growth phase, whereas at later stages, a decay in protein abundance was observable. Our investigation showcases the upscaling of an optogenetic production process from small flasks to a bioreactor. Optogenetic-controlled production in a fermenter is highly cost-effective due to the cheap inducer and therefore a viable alternative to chemicals for a process that requires an induction step.
3.
Split Cas9, not hairs - advancing the therapeutic index of CRISPR technology.
Abstract:
The discovery that the bacterial CRISPR/Cas9 system can be translated into mammalian cells continues to have an unprecedented impact on the biomedical research community, as it largely facilitates efforts to experimentally interrogate or therapeutically modify the cellular genome. In particular, CRISPR promises the ability to correct disease-associated genetic defects, or to target and destroy invading foreign DNA, in a simple, efficient and selective manner directly in affected human cells or tissues. Here, we highlight a set of exciting new strategies that aim at further increasing the therapeutic index of CRISPR technologies, by reducing the size of Cas9 expression cassettes and thus enhancing their compatibility with viral gene delivery vectors. Specifically, we discuss the concept of splitCas9 whereby the Cas9 holo-protein is segregated into two parts that are expressed individually and reunited in the cell by various means, including use of (i) the gRNA as a scaffold for Cas9 assembly, (ii) the rapamycin-controlled FKBP/FRB system, (iii) the light-regulated Magnet system, or (iv) inteins. We describe how these avenues, despite pursuing the identical aim, differ in critical features comprising the extent of spatio-temporal control of CRISPR activity, and discuss additional improvements to their efficiency or specificity that should foster their clinical translation.
4.
Optogenetic control of signaling in mammalian cells.
Abstract:
Molecular signals are sensed by their respective receptors and information is transmitted and processed by a sophisticated intracellular network controlling various biological functions. Optogenetic tools allow the targeting of specific signaling nodes for a precise spatiotemporal control of downstream effects. These tools are based on photoreceptors such as phytochrome B (PhyB), cryptochrome 2, or light-oxygen-voltage-sensing domains that reversibly bind to specific interaction partners in a light-dependent manner. Fusions of a protein of interest to the photoreceptor or their interaction partners may enable the control of the protein function by light-mediated dimerization, a change of subcellular localization, or due to photocaging/-uncaging of effectors. In this review, we summarize the photoreceptors and the light-based mechanisms utilized for the modulation of signaling events in mammalian cells focusing on non-neuronal applications. We discuss in detail optogenetic tools and approaches applied to control signaling events mediated by second messengers, Rho GTPases and growth factor-triggered signaling cascades namely the RAS/RAF and phosphatidylinositol-3-kinase pathways. Applying the latest generation of optogenetic tools allows to control cell fate decisions such as proliferation and differentiation or to deliver therapeutic substances in a spatiotemporally controlled manner.
5.
Genetically engineered light sensors for control of bacterial gene expression.
Abstract:
Light of different wavelengths can serve as a transient, noninvasive means of regulating gene expression for biotechnological purposes. Implementation of advanced gene regulatory circuits will require orthogonal transcriptional systems that can be simultaneously controlled and that can produce several different control states. Fully genetically encoded light sensors take advantage of the favorable characteristics of light, do not need the supplementation of any chemical inducers or co-factors, and have been demonstrated to control gene expression in Escherichia coli. Herein, we review engineered light-sensor systems with potential for in vivo regulation of gene expression in bacteria, and highlight different means of extending the range of available light input and transcriptional output signals. Furthermore, we discuss advances in multiplexing different light sensors for achieving multichromatic control of gene expression and indicate developments that could facilitate the construction of efficient systems for light-regulated, multistate control of gene expression.