Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Real-Time Optogenetics System for Controlling Gene Expression Using a Model-Based Design.

green CcaS/CcaR E. coli in silico Transgene expression
Anal Chem, 5 Feb 2021 DOI: 10.1021/acs.analchem.0c04594 Link to full text
Abstract: Optimization of engineered biological systems requires precise control over the rates and timing of gene expression. Optogenetics is used to dynamically control gene expression as an alternative to conventional chemical-based methods since it provides a more convenient interface between digital control software and microbial culture. Here, we describe the construction of a real-time optogenetics platform, which performs closed-loop control over the CcaR-CcaS two-plasmid system in Escherichia coli. We showed the first model-based design approach by constructing a nonlinear representation of the CcaR-CcaS system, tuned the model through open-loop experimentation to capture the experimental behavior, and applied the model in silico to inform the necessary changes to build a closed-loop optogenetic control system. Our system periodically induces and represses the CcaR-CcaS system while recording optical density and fluorescence using image processing techniques. We highlight the facile nature of constructing our system and how our model-based design approach will potentially be used to model other systems requiring closed-loop optogenetic control.
2.

Emerging approaches for spatiotemporal control of targeted genome with inducible CRISPR-Cas9.

blue cyan near-infrared red Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Anal Chem, 21 Nov 2017 DOI: 10.1021/acs.analchem.7b04757 Link to full text
Abstract: The breakthrough CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 (CRISPR-associated protein 9) nuclease has revolutionized our ability in genome engineering. Although Cas9 is already a powerful tool for simple and efficient target endogenous gene manipulation, further engineering of Cas9 will improve the performance of Cas9, such as gene-editing efficiency and accuracy in vivo, and expand the application possibility of this Cas9 technology. The emerging inducible Cas9 methods, which can control the activity of Cas9 using an external stimulus such as chemicals and light, have the potential to provide spatiotemporal gene manipulation in user-defined cell population at a specific time and improve the accuracy of Cas9-mediated genome editing. In this review, we focus on the recent advance in inducible Cas9 technologies, especially light-inducible Cas9, and related methodologies, and also discuss future directions of this emerging tools.
Submit a new publication to our database