Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

Advanced deep-tissue imaging and manipulation enabled by biliverdin reductase knockout.

near-infrared red BphP1/Q-PAS1 DrBphP iLight 4T1 HeLa mouse in vivo murine lung endothelial cells primary mouse cortical neurons primary mouse fibroblasts Transgene expression
bioRxiv, 18 Oct 2024 DOI: 10.1101/2024.10.18.619161 Link to full text
Abstract: We developed near-infrared (NIR) photoacoustic and fluorescence probes, as well as optogenetic tools from bacteriophytochromes, and enhanced their performance using biliverdin reductase-A knock-out model (Blvra-/-). Blvra-/- elevates endogenous heme-derived biliverdin chromophore for bacteriophytochrome-derived NIR constructs. Consequently, light-controlled transcription with IsPadC-based optogenetic tool improved up to 25-fold compared to wild-type cells, with 100-fold activation in Blvra-/- neurons. In vivo, light-induced insulin production in Blvra-/- reduced blood glucose in diabetes by ∼60%, indicating high potential for optogenetic therapy. Using 3D photoacoustic, ultrasound, and two-photon fluorescence imaging, we overcame depth limitations of recording NIR probes. We achieved simultaneous photoacoustic imaging of DrBphP in neurons and super-resolution ultrasound localization microscopy of blood vessels ∼7 mm deep in the brain, with intact scalp and skull. Two-photon microscopy provided cell-level resolution of miRFP720-expressing neurons ∼2.2 mm deep. Blvra-/- significantly enhances efficacy of biliverdin-dependent NIR systems, making it promising platform for interrogation and manipulation of biological processes.
2.

Stable Transgenic Mouse Strain with Enhanced Photoactivatable Cre Recombinase for Spatiotemporal Genome Manipulation.

blue CRY2/CIB1 Magnets mouse in vivo primary mouse fibroblasts Nucleic acid editing
Adv Sci (Weinh), 20 Oct 2022 DOI: 10.1002/advs.202201352 Link to full text
Abstract: Optogenetic genome engineering is a powerful technology for high-resolution spatiotemporal genetic manipulation, especially for in vivo studies. It is difficult to generate stable transgenic animals carrying a tightly regulated optogenetic system, as its long-term expression induces high background activity. Here, the generation of an enhanced photoactivatable Cre recombinase (ePA-Cre) transgenic mouse strain with stringent light responsiveness and high recombination efficiency is reported. Through serial optimization, ePA-Cre is developed to generate a transgenic mouse line that exhibits 175-fold induction upon illumination. Efficient light-dependent recombination is detected in embryos and various adult tissues of ePA-Cre mice crossed with the Ai14 tdTomato reporter. Importantly, no significant background Cre activity is detected in the tested tissues except the skin. Moreover, efficient light-inducible cell ablation is achieved in ePA-Cre mice crossed with Rosa26-LSL-DTA mice. In conclusion, ePA-Cre mice offer a tightly inducible, highly efficient, and spatiotemporal-specific genome engineering tool for multiple applications.
3.

Optogenetic manipulation and photoacoustic imaging using a near-infrared transgenic mouse model.

near-infrared BphP1/Q-PAS1 4T1 mouse in vivo primary mouse endothelial cells primary mouse fibroblasts primary mouse hippocampal neurons
Nat Commun, 19 May 2022 DOI: 10.1038/s41467-022-30547-6 Link to full text
Abstract: Optogenetic manipulation and optical imaging in the near-infrared range allow non-invasive light-control and readout of cellular and organismal processes in deep tissues in vivo. Here, we exploit the advantages of Rhodopseudomonas palustris BphP1 bacterial phytochrome, which incorporates biliverdin chromophore and reversibly photoswitches between the ground (740-800 nm) and activated (620-680 nm) states, to generate a loxP-BphP1 transgenic mouse model. The mouse enables Cre-dependent temporal and spatial targeting of BphP1 expression in vivo. We validate the optogenetic performance of endogenous BphP1, which in the activated state binds its engineered protein partner QPAS1, to trigger gene transcription in primary cells and living mice. We demonstrate photoacoustic tomography of BphP1 expression in different organs, developing embryos, virus-infected tissues and regenerating livers, with the centimeter penetration depth. The transgenic mouse model provides opportunities for both near-infrared optogenetics and photoacoustic imaging in vivo and serves as a source of primary cells and tissues with genomically encoded BphP1.
Submit a new publication to our database