Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: host:"primary mouse T cells"
Showing 1 - 3 of 3 results
1.

Optogenetics Methods and Protocols

blue green red AsLOV2 CcaS/CcaR Cph1 CRY2/CIB1 CRY2olig DrBphP iLID LOVTRAP Magnets PAL PhyB/PIF6 TtCBD TULIP VVD YtvA 3T3-L1 B. subtilis Cos-7 E. coli H9c2 HaCaT HEK293T HeLa HFF-1 Jurkat MDA-MB-231 MKN28 mouse in vivo primary mouse T cells S. cerevisiae Schneider 2 U-2 OS Y. enterocolitica zebrafish in vivo
Methods Mol Biol, 26 Dec 2024 DOI: 10.1007/978-1-0716-4047-0 Link to full text
Abstract: This volume explores the latest advancements in the field of optogenetics and how it uses cellular light-sensing components and genetic engineering to control proteins and biological processes. The book chapters are organized into four parts. Part One focuses on intracellular optogenetic components for control of specific cell functions; Part Two looks at externally supplied light regulators that do not require genetic manipulation of target cells; Part Three highlights optogenetic control of organelles, and Part Four introduces technical tools required for light induction in optogenetic experiments, as well as a method for performing and analyzing optogenetic cell-cell adhesion. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and practical, Optogenetics: Methods and Protocols is a valuable resource to help researchers understand and apply the concepts of optogenetics and the underlying bioengineering principles, and establish the required technical light-illumination setups for administering light inputs and analysis of experimental outcomes.
2.

Optogenetically engineered Septin-7 enhances immune cell infiltration of tumor spheroids.

blue AsLOV2 Cos-7 MDA-MB-231 NK-92 primary mouse T cells Control of cytoskeleton / cell motility / cell shape Control of cell-cell / cell-material interactions
Proc Natl Acad Sci U S A, 23 Oct 2024 DOI: 10.1073/pnas.2405717121 Link to full text
Abstract: Chimeric antigen receptor T cell therapies have achieved great success in eradicating some liquid tumors, whereas the preclinical results in treating solid tumors have proven less decisive. One of the principal challenges in solid tumor treatment is the physical barrier composed of a dense extracellular matrix, which prevents immune cells from penetrating the tissue to attack intratumoral cancer cells. Here, we improve immune cell infiltration into solid tumors by manipulating septin-7 functions in cells. Using protein allosteric design, we reprogram the three-dimensional structure of septin-7 and insert a blue light-responsive light-oxygen-voltage-sensing domain 2 (LOV2), creating a light-controllable septin-7-LOV2 hybrid protein. Blue light inhibits septin-7 function in live cells, inducing extended cell protrusions and cell polarization, enhancing cell transmigration efficiency through confining spaces. We genetically edited human natural killer cell line (NK92) and mouse primary CD8+ T-cells expressing the engineered protein, and we demonstrated improved penetration and cytotoxicity against various tumor spheroid models. Our proposed strategy to enhance immune cell infiltration is compatible with other methodologies and therefore, could be used in combination to further improve cell-based immunotherapies against solid tumors.
3.

Influence of a new virostatic compound on the induction of enzymes in rat liver.

blue CRY2/CIB1 EL222 HEK293FT HEK293T mouse in vivo primary mouse T cells Nucleic acid editing
Arzneimittelforschung, Sep 1975 DOI: 10.1093/nar/gkaf213 Link to full text
Abstract: The virostatic compound N,N-diethyl-4-[2-(2-oxo-3-tetradecyl-1-imidazolidinyl)-ethyl]-1-piperazinecarboxamide-hydrochloride (5531) was analyzed as to its effect on the induction of tryptophan-pyrrolase and tyrosineaminotransferase in rat liver. 1. The basic activity of the enzymes was not influenced by the substance either in normal or in adrenalectomized animals. 2. The induction of the enzymes by cortisone increased in the presence of the compound whereas the substrate induction remained unchanged. 3. The induction of tyrosine-aminotransferase by dexamethasonephosphate in tissue culture is inhibited if the dose of compound 5531 is higher than 5 mug/ml.
Submit a new publication to our database