Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Optical Control of Mononegavirus Gene Expression and Replication.

blue Magnets BHK/T7-9 HEK293T MDBK Vero/hSLAM
Methods Mol Biol, 2024 DOI: 10.1007/978-1-0716-3870-5_4 Link to full text
Abstract: Mononegaviruses are promising tools as oncolytic and transgene vectors for gene therapy and regenerative medicine. However, when mononegaviruses are used for therapeutic applications, the viral activity must be strictly controlled due to concerns about toxicity and severe side effects. With this technology, mononegavirus vectors can be grown where they are intended and can be easily removed when they are no longer needed. In particular, a photoswitch protein called Magnet (consisting of two magnet domains) is incorporated into the hinge region between the connector and methyltransferase domains of the mononegavirus polymerase protein (L protein) to disrupt the L protein functions. Blue light (470 ± 20 nm) irradiation causes the dimerization of the two magnet domains, and the L protein is restored to activity, allowing viral gene expression and virus replication. Since the magnet domains' dimerization is reversible, viral gene expression and replication cease when blue light irradiation is stopped.
2.

Photocontrollable mononegaviruses.

blue Magnets BHK-21 mouse in vivo Vero/hSLAM Nucleic acid editing
Proc Natl Acad Sci USA, 28 May 2019 DOI: 10.1073/pnas.1906531116 Link to full text
Abstract: Mononegaviruses are promising tools as oncolytic vectors and transgene delivery vectors for gene therapy and regenerative medicine. By using the Magnet proteins, which reversibly heterodimerize upon blue light illumination, photocontrollable mononegaviruses (measles and rabies viruses) were generated. The Magnet proteins were inserted into the flexible domain of viral polymerase, and viruses showed strong replication and oncolytic activities only when the viral polymerases were activated by blue light illumination.
Submit a new publication to our database