Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 115 results
1.

Rapid and reversible regulation of cell cycle progression in budding yeast using optogenetics.

blue EL222 S. cerevisiae Cell cycle control
bioRxiv, 22 Sep 2024 DOI: 10.1101/2024.09.21.614242 Link to full text
Abstract: The regulatory complexity of the eukaryotic cell cycle poses technical challenges in experiment design and data interpretation, leaving gaps in our understanding of how cells coordinate cell cycle-related processes. Traditional methods, such as knockouts and deletions are often ineffective to compensatory interactions in the cell cycle control network, while chemical agents that cause cell cycle arrest can have undesired pleiotropic effects. Synthetic inducible systems targeting specific cell cycle regulators offer potential solutions but are limited by the need for external inducers, which make fast reversibility technically challenging. To address these issues, we developed an optogenetic tool (OPTO-Cln2) that enables light-controlled and reversible regulation of G1 progression in budding yeast. Through extensive validation and benchmarking via time-lapse microscopy, we verify that OPTO-Cln2-carrying strains can rapidly toggle between normal and altered G1 progression. By integrating OPTO-Cln2 with a readout of nutrient-sensing pathways (TORC1 and PKA), we show that the oscillatory activity of these pathways is tightly coordinated with G1 progression. Finally, we demonstrate that the rapid reversibility of OPTO-Cln2 facilitates multiple cycles of synchronous arrest and release of liquid cell cultures. Our work provides a powerful new approach for studying cell cycle dynamics and the coordination of growth- with division-related processes.
2.

Optogenetic control of phosphate-responsive genes using single component fusion proteins in Saccharomyces cerevisiae.

blue EL222 S. cerevisiae Endogenous gene expression
bioRxiv, 3 Aug 2024 DOI: 10.1101/2024.08.02.605841 Link to full text
Abstract: Blue light illumination can be detected by Light-Oxygen-Voltage (LOV) photosensing proteins and translated into a range of biochemical responses, facilitating the generation of novel optogenetic tools to control cellular function. Here we develop new variants of our previously described VP-EL222 light-dependent transcription factor and apply them to study the phosphate-responsive signaling (PHO) pathway in the budding yeast Saccharomyces cerevisiae, exemplifying the utilities of these new tools. Focusing first on the VP-EL222 protein itself, we quantified the tunability of gene expression as a function of light intensity and duration, and demonstrated that this system can tolerate the addition of substantially larger effector domains without impacting function. We further demonstrated the utility of several EL222-driven transcriptional controllers in both plasmid and genomic settings, using the PHO5 and PHO84 promoters in their native chromosomal contexts as examples. These studies highlight the utility of light-controlled gene activation using EL222 tethered to either artificial transcription domains or yeast activator proteins (Pho4). Similarly, we demonstrate the ability to optogenetically repress gene expression with EL222 fused to the yeast Ume6 protein. We finally investigated the effects of moving EL222 recruitment sites to different locations within the PHO5 and PHO84 promoters, as well as determining how this artificial light-controlled regulation could be integrated with the native controls dependent on inorganic phosphate (Pi) availability. Taken together, our work expands the applicability of these versatile optogenetic tools in the types of functionality they can deliver and biological questions that can be probed.
3.

Optogenetic control of a horizontally acquired region in yeast prevent stuck fermentations.

blue NcWC1-LOV VVD S. cerevisiae Endogenous gene expression
bioRxiv, 9 Jul 2024 DOI: 10.1101/2024.07.09.602721 Link to full text
Abstract: Nitrogen limitations in the grape must is the main cause of stuck fermentations during the winemaking process. In Saccharomyces cerevisiae, a genetic segment known as region A, which harbors 12 protein-coding genes, was acquired horizontally from a phylogenetically distant yeast species. This region is mainly present in the genome of wine yeast strains, carrying genes that have been associated with nitrogen utilization. Despite the putative importance of region A in yeast fermentation, its contribution to the fermentative process is largely unknown. In this work, we used a wine yeast strain to evaluate the contribution of region A to the fermentation process. To do this, we first sequenced the genome of the wine yeast strain known as ‘ALL’ using long-read sequencing and determined that region A is present in a single copy with two possible subtelomeric locations. We then implemented an optogenetic system in this wine yeast strain to precisely regulate the expression of each gene inside this region, generating a collection of 12 strains that allow for light- activated gene expression. To evaluate the role of these genes during fermentation, we assayed this collection using microculture and fermentation experiments in synthetic must with varying amounts of nitrogen concentration. Our results show that changes in gene expression for genes within this region can impact growth parameters and fermentation rate. We additionally found that the expression of various genes in region A is necessary to complete the fermentation process and prevent stuck fermentations under low nitrogen conditions. Altogether, our optogenetics-based approach demonstrates the importance of region A in completing fermentation under nitrogen-limited conditions.
4.

Kinetic properties of optogenetic DNA editing by LiCre-loxP.

blue AsLOV2 S. cerevisiae Transgene expression Nucleic acid editing
bioRxiv, 18 May 2024 DOI: 10.1101/2024.05.17.594525 Link to full text
Abstract: Previously, we developed an optogenetic tool made of a single chimeric protein called LiCre that enables the edition of specific changes in the genome of live cells with blue light via DNA recombination between loxP sites (Duplus-Bottin et al., 2021). Here, we used in vitro and in vivo experiments combined with kinetic modeling to provide a deeper characterization of the photo-activated LiCre-loxP recombination reaction. We find that LiCre binds DNA with high affinity in absence of light stimulus, that this binding is cooperative although not as much as for the Cre recombinase from which LiCre was derived and that increasing temperature from 20°C to 37°C gradually increased LiCre efficiency. The recombination kinetics in live cells can be explained by a model where photo-activation of two or more DNA-bound LiCre units (happening in seconds) can produce (in several minutes) a functional recombination synapse. Our conclusions provide helpful guidelines to induce specific genetic changes in live cells using light.
5.

Dynamic Multiplexed Control and Modeling of Optogenetic Systems Using the High-Throughput Optogenetic Platform, Lustro.

blue CRY2/CIB1 EL222 Magnets S. cerevisiae Transgene expression
ACS Synth Biol, 29 Apr 2024 DOI: 10.1021/acssynbio.3c00761 Link to full text
Abstract: The ability to control cellular processes using optogenetics is inducer-limited, with most optogenetic systems responding to blue light. To address this limitation, we leverage an integrated framework combining Lustro, a powerful high-throughput optogenetics platform, and machine learning tools to enable multiplexed control over blue light-sensitive optogenetic systems. Specifically, we identify light induction conditions for sequential activation as well as preferential activation and switching between pairs of light-sensitive split transcription factors in the budding yeast, Saccharomyces cerevisiae. We use the high-throughput data generated from Lustro to build a Bayesian optimization framework that incorporates data-driven learning, uncertainty quantification, and experimental design to enable the prediction of system behavior and the identification of optimal conditions for multiplexed control. This work lays the foundation for designing more advanced synthetic biological circuits incorporating optogenetics, where multiple circuit components can be controlled using designer light induction programs, with broad implications for biotechnology and bioengineering.
6.

A protein condensation network contextualises cell fate decisions.

blue CRY2olig S. cerevisiae Cell cycle control Organelle manipulation
bioRxiv, 18 Apr 2024 DOI: 10.1101/2024.04.18.590070 Link to full text
Abstract: For cells to thrive, they must make appropriate fate decisions based on a myriad of internal and external stimuli. But how do they integrate these different forms of information to contextualise their decisions? Old yeast cells showed an ability to dampen their proliferation as they entered senescence. Conversely, they had an enhanced ability to promote proliferation during escape from pheromone stimulation. A network of nucleoprotein condensation states involving processing bodies (P-bodies) and the prion-like RNA-binding protein, Whi3, controlled these opposing fate decisions. In old but not in young cells, condensation of Whi3 was both necessary and sufficient for senescence entry. In old cells, Whi3 localised to age-dependent P-bodies. Preventing their formation stopped Whi3 condensation from driving senescence entry. Challenging old cells with an external stimulus, pheromone, revealed that the condensates had a second function: potentiating the cell's ability to trigger escape from the mating pheromone response. These findings identify biomolecular condensation as an integrator of contextual information as cells make decisions, enabling them to navigate overlapping life events.
7.

An Optimized Genotyping Workflow for Identifying Highly SCRaMbLEd Synthetic Yeasts.

red PhyB/PIF3 S. cerevisiae Nucleic acid editing
ACS Synth Biol, 10 Apr 2024 DOI: 10.1021/acssynbio.3c00476 Link to full text
Abstract: Synthetic Sc2.0 yeast strains contain hundreds to thousands of loxPsym recombination sites that allow restructuring of the Saccharomyces cerevisiae genome by SCRaMbLE. Thus, a highly diverse yeast population can arise from a single genotype. The selection of genetically diverse candidates with rearranged synthetic chromosomes for downstream analysis requires an efficient and straightforward workflow. Here we present loxTags, a set of qPCR primers for genotyping across loxPsym sites to detect not only deletions but also inversions and translocations after SCRaMbLE. To cope with the large number of amplicons, we generated qTagGer, a qPCR genotyping primer prediction tool. Using loxTag-based genotyping and long-read sequencing, we show that light-inducible Cre recombinase L-SCRaMbLE can efficiently generate diverse recombination events when applied to Sc2.0 strains containing a linear or a circular version of synthetic chromosome III.
8.

Live-cell fluorescence imaging and optogenetic control of PKA kinase activity in fission yeast Schizosaccharomyces pombe.

blue bPAC (BlaC) S. cerevisiae Immediate control of second messengers
Yeast, 7 Apr 2024 DOI: 10.1002/yea.3937 Link to full text
Abstract: The cAMP-PKA signaling pathway plays a crucial role in sensing and responding to nutrient availability in the fission yeast Schizosaccharomyces pombe. This pathway monitors external glucose levels to control cell growth and sexual differentiation. However, the temporal dynamics of the cAMP-PKA pathway in response to external stimuli remains unclear mainly due to the lack of tools to quantitatively visualize the activity of the pathway. Here, we report the development of the kinase translocation reporter (KTR)-based biosensor spPKA-KTR1.0, which allows us to measure the dynamics of PKA activity in fission yeast cells. The spPKA-KTR1.0 is derived from the transcription factor Rst2, which translocates from the nucleus to the cytoplasm upon PKA activation. We found that spPKA-KTR1.0 translocates between the nucleus and cytoplasm in a cAMP-PKA pathway-dependent manner, indicating that the spPKA-KTR1.0 is a reliable indicator of the PKA activity in fission yeast cells. In addition, we implemented a system that simultaneously visualizes and manipulates the cAMP-PKA signaling dynamics by introducing bPAC, a photoactivatable adenylate cyclase, in combination with spPKA-KTR1.0. This system offers an opportunity for investigating the role of the signaling dynamics of the cAMP-PKA pathway in fission yeast cells with higher temporal resolution.
9.

Light-directed evolution of dynamic, multi-state, and computational protein functionalities.

blue red EL222 PhyB/PIF3 S. cerevisiae Cell cycle control Transgene expression
bioRxiv, 2 Mar 2024 DOI: 10.1101/2024.02.28.582517 Link to full text
Abstract: Directed evolution is a powerful method in biological engineering. Current approaches were devised for evolving steady-state properties such as enzymatic activity or fluorescence intensity. A fundamental problem remains how to evolve dynamic, multi-state, or computational functionalities, e.g., folding times, on-off kinetics, state-specific activity, stimulus-responsiveness, or switching and logic capabilities. These require applying selection pressure on all of the states of a protein of interest (POI) and the transitions between them. We realized that optogenetics and cell cycle oscillations could be leveraged for a novel directed evolution paradigm (‘optovolution’) that is germane for this need: We designed a signaling cascade in budding yeast where optogenetic input switches the POI between off (0) and on (1) states. In turn, the POI controls a Cdk1 cyclin, which in the re-engineered cell cycle system is essential for one cell cycle stage but poisonous for another. Thus, the cyclin must oscillate (1-0-1-0…) for cell proliferation. In this system, evolution can act efficiently on the dynamics, transient states, and input-output relations of the POI in every cell cycle. Further, controlling the pacemaker, light, directs and tunes selection pressures. Optovolution is in vivo, continuous, self-selecting, and genetically robust. We first evolved two optogenetic systems, which relay 0/1 input to 0/1 output: We obtained 25 new variants of the widely used LOV transcription factor El222. These mutants were stronger, less leaky, or green- and red-responsive. The latter was conjectured to be impossible for LOV domains but is needed for multiplexing and lowering phototoxicity. Evolving the PhyB-Pif3 optogenetic system, we discovered that loss of YOR1 makes supplementing the expensive and unstable chromophore phycocyanobilin (PCB) unnecessary. Finally, we demonstrate the generality of the method by creating and evolving a destabilized rtTA transcription factor, which performs an AND operation between transcriptional and doxycycline input. Optovolution makes coveted, difficult-to-change protein functionalities evolvable.
10.

Asymmetric oligomerization state and sequence patterning can tune multiphase condensate miscibility.

blue iLID S. cerevisiae U-2 OS Organelle manipulation
Nat Chem, 21 Feb 2024 DOI: 10.1038/s41557-024-01456-6 Link to full text
Abstract: Endogenous biomolecular condensates, composed of a multitude of proteins and RNAs, can organize into multiphasic structures with compositionally distinct phases. This multiphasic organization is generally understood to be critical for facilitating their proper biological function. However, the biophysical principles driving multiphase formation are not completely understood. Here we use in vivo condensate reconstitution experiments and coarse-grained molecular simulations to investigate how oligomerization and sequence interactions modulate multiphase organization in biomolecular condensates. We demonstrate that increasing the oligomerization state of an intrinsically disordered protein results in enhanced immiscibility and multiphase formation. Interestingly, we find that oligomerization tunes the miscibility of intrinsically disordered proteins in an asymmetric manner, with the effect being more pronounced when the intrinsically disordered protein, exhibiting stronger homotypic interactions, is oligomerized. Our findings suggest that oligomerization is a flexible biophysical mechanism that cells can exploit to tune the internal organization of biomolecular condensates and their associated biological functions.
11.

Optogenetic control of pheromone gradients reveals functional limits of mating behavior in budding yeast.

blue EL222 S. cerevisiae Signaling cascade control Endogenous gene expression
bioRxiv, 8 Feb 2024 DOI: 10.1101/2024.02.06.578657 Link to full text
Abstract: Cell-cell communication through diffusible signals allows distant cells to coordinate biological functions. Such coordination depends on the signal landscapes generated by emitter cells and the sensory capacities of receiver cells. In contrast to morphogen gradients in embryonic development, microbial signal landscapes occur in open space with variable cell densities, spatial distributions, and physical environments. How do microbes shape signal landscapes to communicate robustly under such circumstances remains an unanswered question. Here we combined quantitative spatial optogenetics with biophysical theory to show that in the mating system of budding yeast— where two mates communicate to fuse—signal landscapes convey demographic or positional information depending on the spatial organization of mating populations. This happens because α-factor pheromone and its mate-produced protease Bar1 have characteristic wide and narrow diffusion profiles, respectively. Functionally, MATα populations signal their presence as collectives, but not their position as individuals, and Bar1 is a sink of alpha-factor, capable of both density-dependent global attenuation and local gradient amplification. We anticipate that optogenetic control of signal landscapes will be instrumental to quantitatively understand the spatial behavior of natural and engineered cell-cell communication systems.
12.

Enhancing high-throughput optogenetics: Integration of LITOS with Lustro enables simultaneous light stimulation and shaking.

blue CRY2/CIB1 S. cerevisiae Transgene expression
MicroPubl Biol, 2 Feb 2024 DOI: 10.17912/micropub.biology.001073 Link to full text
Abstract: Optogenetics is a powerful tool that uses light to control cellular behavior. Here we enhance high-throughput characterization of optogenetic experiments through the integration of the LED Illumination Tool for Optogenetic Stimulation (LITOS) with the previously published automated platform Lustro. Lustro enables efficient high-throughput screening and characterization of optogenetic systems. The initial iteration of Lustro used the optoPlate illumination device for light induction, with the robot periodically moving the plate over to a shaking device to resuspend cell cultures. Here, we designed a 3D-printed adaptor, rendering LITOS compatible with the BioShake 3000-T ELM used in Lustro. This novel setup allows for concurrent light stimulation and culture agitation, streamlining experiments. Our study demonstrates comparable growth rates between constant and intermittent shaking of Saccharomyces cerevisiae liquid cultures. While the light intensity of the LITOS is not as bright as the optoPlate used in the previous iteration of Lustro, the constant shaking increased the maturation rate of the mScarlet-I fluorescent reporter used. Only a marginal increase in temperature was observed when using the modified LITOS equipped with the 3D-printed adaptor. Our findings show that the integration of LITOS onto a plate shaker allows for constant culture shaking and illumination compatible with laboratory automation platforms, such as Lustro.
13.

Construction and Characterization of Light-Responsive Transcriptional Systems.

blue EL222 S. cerevisiae
Methods Mol Biol, 2024 DOI: 10.1007/978-1-0716-4063-0_18 Link to full text
Abstract: Optogenetic tools provide a means for controlling cellular processes that is rapid, noninvasive, and spatially and temporally precise. With the increase in available optogenetic systems, quantitative comparisons of their performances become important to guide experiments. In this chapter, we first discuss how photoreceptors can be repurposed for light-mediated control of transcription. Then, we provide a detailed protocol for characterizing light-regulated transcriptional systems in budding yeast using fluorescence time-lapse microscopy and mathematical modeling, expanding on our recent publication (Gligorovski et al., Nat Commun 14:3810, 2023).
14.

Diya – a universal light illumination platform for multiwell plate cultures.

blue green CcaS/CcaR CRY2/CIB1 EL222 Magnets VVD E. coli HEK293T HeLa S. cerevisiae Transgene expression
iScience, 9 Sep 2023 DOI: 10.1016/j.isci.2023.107862 Link to full text
Abstract: Recent progress in protein engineering has established optogenetics as one of the leading external non-invasive stimulation strategies, with many optogenetic tools being designed for in vivo operation. Characterization and optimization of these tools require a high-throughput and versatile light delivery system targeting micro-titer culture volumes. Here, we present a universal light illumination platform – Diya, compatible with a wide range of cell culture plates and dishes. Diya hosts specially-designed features ensuring active thermal management, homogeneous illumination, and minimal light bleedthrough. It offers light induction programming via a user-friendly custom-designed GUI. Through extensive characterization experiments with multiple optogenetic tools in diverse model organisms (bacteria, yeast and human cell lines), we show that Diya maintains viable conditions for cell cultures undergoing light induction. Finally, we demonstrate an optogenetic strategy for in vivo biomolecular controller operation. With a custom-designed antithetic integral feedback circuit, we exhibit robust perfect adaptation and light-controlled set-point variation using Diya.
15.

C-terminal sequence stability profiling in Saccharomyces cerevisiae reveals protective protein quality control pathways.

blue iLID S. cerevisiae Transgene expression
J Biol Chem, 16 Aug 2023 DOI: 10.1016/j.jbc.2023.105166 Link to full text
Abstract: Protein quality control (PQC) mechanisms are essential for degradation of misfolded or dysfunctional proteins. An essential part of protein homeostasis is recognition of defective proteins by PQC components and their elimination by the ubiquitin-proteasome system, often concentrating on protein termini as indicators of protein integrity. Changes in amino acid composition of C-terminal ends arise through protein disintegration, alternative splicing or during the translation step of protein synthesis from premature termination or translational stop-codon read-through. We characterized reporter protein stability using light-controlled exposure of random C-terminal peptides (CtPC) in budding yeast revealing stabilizing and destabilizing features of amino acids at positions -5 to -1 of the C-terminus. The (de)stabilization properties of CtPC-degrons depend on amino acid identity, position as well as composition of the C-terminal sequence and are transferable. Evolutionary pressure towards stable proteins in yeast is evidenced by amino acid residues under-represented in cytosolic and nuclear proteins at corresponding C-terminal positions, but over-represented in unstable CtPC-degrons, and vice versa. Furthermore, analysis of translational stop-codon read-through peptides suggested that such extended proteins have destabilizing C-termini. PQC pathways targeting CtPC-degrons involved the ubiquitin-protein ligase Doa10 and the cullin-RING E3 ligase (CRL) SCFDas1. Overall, our data suggest a proteome protection mechanism that targets proteins with unnatural C-termini by recognizing a surprisingly large number of C-terminal sequence variants.
16.

High-Throughput Optogenetics Experiments in Yeast Using the Automated Platform Lustro.

blue CRY2/CIB1 Magnets S. cerevisiae
J Vis Exp, 4 Aug 2023 DOI: 10.3791/65686 Link to full text
Abstract: Optogenetics offers precise control over cellular behavior by utilizing genetically encoded light-sensitive proteins. However, optimizing these systems to achieve the desired functionality often requires multiple design-build-test cycles, which can be time-consuming and labor-intensive. To address this challenge, we have developed Lustro, a platform that combines light stimulation with laboratory automation, enabling efficient high-throughput screening and characterization of optogenetic systems. Lustro utilizes an automation workstation equipped with an illumination device, a shaking device, and a plate reader. By employing a robotic arm, Lustro automates the movement of a microwell plate between these devices, allowing for the stimulation of optogenetic strains and the measurement of their response. This protocol provides a step-by-step guide on using Lustro to characterize optogenetic systems for gene expression control in the budding yeast Saccharomyces cerevisiae. The protocol covers the setup of Lustro's components, including the integration of the illumination device with the automation workstation. It also provides detailed instructions for programming the illumination device, plate reader, and robot, ensuring smooth operation and data acquisition throughout the experimental process.
17.

Lustro: High-Throughput Optogenetic Experiments Enabled by Automation and a Yeast Optogenetic Toolkit.

blue CRY2/CIB1 Magnets S. cerevisiae Transgene expression
ACS Synth Biol, 11 Jul 2023 DOI: 10.1021/acssynbio.3c00215 Link to full text
Abstract: Optogenetic systems use genetically encoded light-sensitive proteins to control cellular processes. This provides the potential to orthogonally control cells with light; however, these systems require many design-build-test cycles to achieve a functional design and multiple illumination variables need to be laboriously tuned for optimal stimulation. We combine laboratory automation and a modular cloning scheme to enable high-throughput construction and characterization of optogenetic split transcription factors in Saccharomyces cerevisiae. We expand the yeast optogenetic toolkit to include variants of the cryptochromes and enhanced Magnets, incorporate these light-sensitive dimerizers into split transcription factors, and automate illumination and measurement of cultures in a 96-well microplate format for high-throughput characterization. We use this approach to rationally design and test an optimized enhanced Magnet transcription factor with improved light-sensitive gene expression. This approach is generalizable to the high-throughput characterization of optogenetic systems across a range of biological systems and applications.
18.

Optogenetic control of Cdc48 for dynamic metabolic engineering in yeast.

blue AsLOV2 CRY2/CIB1 S. cerevisiae Cell cycle control
Metab Eng, 7 Jul 2023 DOI: 10.1016/j.ymben.2023.06.013 Link to full text
Abstract: Dynamic metabolic engineering is a strategy to switch key metabolic pathways in microbial cell factories from biomass generation to accumulation of target products. Here, we demonstrate that optogenetic intervention in the cell cycle of budding yeast can be used to increase production of valuable chemicals, such as the terpenoid β-carotene or the nucleoside analog cordycepin. We achieved optogenetic cell-cycle arrest in the G2/M phase by controlling activity of the ubiquitin-proteasome system hub Cdc48. To analyze the metabolic capacities in the cell cycle arrested yeast strain, we studied their proteomes by timsTOF mass spectrometry. This revealed widespread, but highly distinct abundance changes of metabolic key enzymes. Integration of the proteomics data in protein-constrained metabolic models demonstrated modulation of fluxes directly associated with terpenoid production as well as metabolic subsystems involved in protein biosynthesis, cell wall synthesis, and cofactor biosynthesis. These results demonstrate that optogenetically triggered cell cycle intervention is an option to increase the yields of compounds synthesized in a cellular factory by reallocation of metabolic resources.
19.

Multidimensional characterization of inducible promoters and a highly light-sensitive LOV-transcription factor.

blue red EL222 PhyB/PIF3 S. cerevisiae Transgene expression
Nat Commun, 27 Jun 2023 DOI: 10.1038/s41467-023-38959-8 Link to full text
Abstract: The ability to independently control the expression of different genes is important for quantitative biology. Using budding yeast, we characterize GAL1pr, GALL, MET3pr, CUP1pr, PHO5pr, tetOpr, terminator-tetOpr, Z3EV, blue-light inducible optogenetic systems El222-LIP, El222-GLIP, and red-light inducible PhyB-PIF3. We report kinetic parameters, noise scaling, impact on growth, and the fundamental leakiness of each system using an intuitive unit, maxGAL1. We uncover disadvantages of widely used tools, e.g., nonmonotonic activity of MET3pr and GALL, slow off kinetics of the doxycycline- and estradiol-inducible systems tetOpr and Z3EV, and high variability of PHO5pr and red-light activated PhyB-PIF3 system. We introduce two previously uncharacterized systems: strongLOV, a more light-sensitive El222 mutant, and ARG3pr, which is induced in the absence of arginine or presence of methionine. To demonstrate fine control over gene circuits, we experimentally tune the time between cell cycle Start and mitosis, artificially simulating near-wild-type timing. All strains, constructs, code, and data ( https://promoter-benchmark.epfl.ch/ ) are made available.
20.

Optogenetic spatial patterning of cooperation in yeast populations.

blue EL222 S. cerevisiae Transgene expression
bioRxiv, 15 May 2023 DOI: 10.1101/2023.05.15.540783 Link to full text
Abstract: Microbial communities are a siege of complex metabolic interactions such as cooperation and competition for resources. Methods to control such interactions could lead to major advances in our ability to engineer microbial consortia for bioproduction and synthetic biology applications. Here, we used optogenetics to control invertase production in yeast, thereby creating landscapes of cooperator and cheater cells. Yeast cells behave as cooperators (i.e., transform sucrose into glucose, a public “good”) upon blue light illumination or cheaters (i.e., consume glucose produced by cooperators to grow) in the dark. We show that cooperators benefit best from the hexoses they produce when their domain size is constrained between two cut-off length-scales. From an engineering point of view, the system behaves as a band pass filter. The lower limit is the trace of cheaters’ competition for hexoses, while the upper limit is defined by cooperators’ competition for sucrose. Hence, cooperation mostly occurs at the frontiers with cheater cells, which not only compete for hexoses but also cooperate passively by letting sucrose reach cooperators. We anticipate that this optogenetic method could be applied to shape metabolic interactions in a variety of microbial ecosystems.
21.

Engineered allostery in light-regulated LOV-Turbo enables precise spatiotemporal control of proximity labeling in living cells.

blue AsLOV2 iLID E. coli HEK293T mouse in vivo rat cortical neurons S. cerevisiae Transgene expression
Nat Methods, 15 May 2023 DOI: 10.1038/s41592-023-01880-5 Link to full text
Abstract: The incorporation of light-responsive domains into engineered proteins has enabled control of protein localization, interactions and function with light. We integrated optogenetic control into proximity labeling, a cornerstone technique for high-resolution proteomic mapping of organelles and interactomes in living cells. Through structure-guided screening and directed evolution, we installed the light-sensitive LOV domain into the proximity labeling enzyme TurboID to rapidly and reversibly control its labeling activity with low-power blue light. 'LOV-Turbo' works in multiple contexts and dramatically reduces background in biotin-rich environments such as neurons. We used LOV-Turbo for pulse-chase labeling to discover proteins that traffic between endoplasmic reticulum, nuclear and mitochondrial compartments under cellular stress. We also showed that instead of external light, LOV-Turbo can be activated by bioluminescence resonance energy transfer from luciferase, enabling interaction-dependent proximity labeling. Overall, LOV-Turbo increases the spatial and temporal precision of proximity labeling, expanding the scope of experimental questions that can be addressed with proximity labeling.
22.

Transcription factor localization dynamics and DNA binding drive distinct promoter interpretations.

blue LOVTRAP S. cerevisiae Transgene expression
Cell Rep, 21 Apr 2023 DOI: 10.1016/j.celrep.2023.112426 Link to full text
Abstract: Environmental information may be encoded in the temporal dynamics of transcription factor (TF) activation and subsequently decoded by gene promoters to enact stimulus-specific gene expression programs. Previous studies of this behavior focused on the encoding and decoding of information in TF nuclear localization dynamics, yet cells control the activity of TFs in myriad ways, including by regulating their ability to bind DNA. Here, we use light-controlled mutants of the yeast TF Msn2 as a model system to investigate how promoter decoding of TF localization dynamics is affected by changes in the ability of the TF to bind DNA. We find that yeast promoters directly decode the light-controlled localization dynamics of Msn2 and that the effects of changing Msn2 affinity on that decoding behavior are highly promoter dependent, illustrating how cells could regulate TF localization dynamics and DNA binding in concert for improved control of gene expression.
23.

Controlling protein stability with SULI, a highly sensitive tag for stabilization upon light induction.

blue PtAU1-LOV VVD S. cerevisiae zebrafish in vivo Cell cycle control Developmental processes
Nat Commun, 15 Apr 2023 DOI: 10.1038/s41467-023-37830-0 Link to full text
Abstract: Optogenetics tools for precise temporal and spatial control of protein abundance are valuable in studying diverse complex biological processes. In the present study, we engineer a monomeric tag of stabilization upon light induction (SULI) for yeast and zebrafish based on a single light-oxygen-voltage domain from Neurospora crassa. Proteins of interest fused with SULI are stable upon light illumination but are readily degraded after transfer to dark conditions. SULI shows a high dynamic range and a high tolerance to fusion at different positions of the target protein. Further studies reveal that SULI-mediated degradation occurs through a lysine ubiquitination-independent proteasome pathway. We demonstrate the usefulness of SULI in controlling the cell cycle in yeast and regulating protein stability in zebrafish, respectively. Overall, our data indicate that SULI is a simple and robust tool to quantitatively and spatiotemporally modulate protein levels for biotechnological or biomedical applications.
24.

PhiReX 2.0: A Programmable and Red Light-Regulated CRISPR-dCas9 System for the Activation of Endogenous Genes in Saccharomyces cerevisiae.

red PhyB/PIF3 S. cerevisiae Endogenous gene expression
ACS Synth Biol, 4 Apr 2023 DOI: 10.1021/acssynbio.2c00517 Link to full text
Abstract: Metabolic engineering approaches do not exclusively require fine-tuning of heterologous genes but oftentimes also modulation or even induction of host gene expression, e.g., in order to rewire metabolic fluxes. Here, we introduce the programmable red light switch PhiReX 2.0, which can rewire metabolic fluxes by targeting endogenous promoter sequences through single-guide RNAs (sgRNAs) and activate gene expression in Saccharomyces cerevisiae upon red light stimulation. The split transcription factor is built from the plant-derived optical dimer PhyB and PIF3, which is fused to a DNA-binding domain based on the catalytically dead Cas9 protein (dCas9) and a transactivation domain. This design combines at least two major advantages: first, the sgRNAs, guiding dCas9 to the promoter of interest, can be exchanged in an efficient and straightforward Golden Gate-based cloning approach, which allows for rational or randomized combination of up to four sgRNAs in a single expression array. Second, target gene expression can be rapidly upregulated by short red light pulses in a light dose-dependent manner and returned to the native expression level by applying far-red light without interfering with the cell culture. Using the native yeast gene CYC1 as an example, we demonstrated that PhiReX 2.0 can upregulate CYC1 gene expression by up to 6-fold in a light intensity-dependent and reversible manner using a single sgRNA.
25.

Optogenetic closed-loop feedback control of the unfolded protein response optimizes protein production.

blue EL222 S. cerevisiae Transgene expression
Metab Eng, 11 Mar 2023 DOI: 10.1016/j.ymben.2023.03.001 Link to full text
Abstract: In biotechnological protein production processes, the onset of protein unfolding at high gene expression levels leads to diminishing production yields and reduced efficiency. Here we show that in silico closed-loop optogenetic feedback control of the unfolded protein response (UPR) in S. cerevisiae clamps gene expression rates at intermediate near-optimal values, leading to significantly improved product titers. Specifically, in a fully-automated custom-built 1L-photobioreactor, we used a cybergenetic control system to steer the level of UPR in yeast to a desired set-point by optogenetically modulating the expression of α-amylase, a hard-to-fold protein, based on real-time feedback measurements of the UPR, resulting in 60% higher product titers. This proof-of-concept study paves the way for advanced optimal biotechnology production strategies that diverge from and complement current strategies employing constitutive overexpression or genetically hardwired circuits.
Submit a new publication to our database