Showing 1 - 3 of 3 results
1.
Compartmentalized cAMP Generation by Engineered Photoactivated Adenylyl Cyclases.
Abstract:
Because small-molecule activators of adenylyl cyclases (AC) affect ACs cell-wide, it is challenging to explore the signaling consequences of AC activity emanating from specific intracellular compartments. We explored this issue using a series of engineered, optogenetic, spatially restricted, photoactivable adenylyl cyclases (PACs) positioned at the plasma membrane (PM), the outer mitochondrial membrane (OMM), and the nucleus (Nu). The biochemical consequences of brief photostimulation of PAC is primarily limited to the intracellular site occupied by the PAC. By contrast, sustained photostimulation results in distal cAMP signaling. Prolonged cAMP generation at the OMM profoundly stimulates nuclear protein kinase (PKA) activity. We have found that phosphodiesterases 3 (OMM and PM) and 4 (PM) modulate proximal (local) cAMP-triggered activity, whereas phosphodiesterase 4 regulates distal cAMP activity as well as the migration of PKA's catalytic subunit into the nucleus.
2.
Design, construction, and validation of optogenetic proteins.
Abstract:
Cellular optogenetics employs light-regulated, genetically encoded protein actuators to perturb cellular signaling with unprecedented spatial and temporal control. Here, we present a potentially generalized approach for transforming a given protein of interest (POI) into an optogenetic species. We describe the rational and methods by which we developed three different optogenetic POIs utilizing the Cry2-Cib photodimerizing pair. The process pipeline is highlighted by (1) developing a low level, constitutively active POI that is independent of endogenous regulation, (2) fusion of the mutant protein of interest to an optogenetic photodimerizing system, and (3) light-mediated recruitment of the light-responsive POI to specific subcellular regions.
3.
Design and Profiling of a Subcellular Targeted Optogenetic cAMP-Dependent Protein Kinase.
Abstract:
Although the cAMP-dependent protein kinase (PKA) is ubiquitously expressed, it is sequestered at specific subcellular locations throughout the cell, thereby resulting in compartmentalized cellular signaling that triggers site-specific behavioral phenotypes. We developed a three-step engineering strategy to construct an optogenetic PKA (optoPKA) and demonstrated that, upon illumination, optoPKA migrates to specified intracellular sites. Furthermore, we designed intracellular spatially segregated reporters of PKA activity and confirmed that optoPKA phosphorylates these reporters in a light-dependent fashion. Finally, proteomics experiments reveal that light activation of optoPKA results in the phosphorylation of known endogenous PKA substrates as well as potential novel substrates.