Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Optogenetic manipulation of intracellular calcium by BACCS promotes differentiation of MC3T3-E1 cells.

blue AsLOV2 MC3T3-E1 Cell differentiation Immediate control of second messengers
Biochem Biophys Res Commun, 27 Oct 2018 DOI: 10.1016/j.bbrc.2018.10.107 Link to full text
Abstract: Bone remodeling is maintained through the balance between bone formation by osteoblasts and bone resorption by osteoclasts. Previous studies suggested that intracellular Ca2+ signaling plays an important role in the differentiation of osteoblasts; however, the molecular mechanism of Ca2+ signaling in the differentiation of osteoblasts remains unclear. To elucidate the effect of Ca2+ signaling in osteoblasts, we employed an optogenetic tool, blue light-activated Ca2+ channel switch (BACCS). BACCS was used to spatiotemporally control intracellular Ca2+ with blue light stimulation. MC3T3-E1 cells, which have been used as a model of differentiation from preosteoblast to osteoblast, were promoted to differentiate by BACCS expression and rhythmical blue light stimulation. The results indicated that intracellular Ca2+ change from the outside of the cells can regulate signaling for differentiation of MC3T3-E1 cells. Our findings provide evidence that Ca2+ could cause osteoblast differentiation.
2.

Optogenetic activation of Plexin-B1 reveals contact repulsion between osteoclasts and osteoblasts.

blue CRY2/CIB1 CRY2/CRY2 Cos-7 MC3T3-E1 primary mouse calvarial osteoblasts Control of cytoskeleton / cell motility / cell shape
Nat Commun, 21 Jun 2017 DOI: 10.1038/ncomms15831 Link to full text
Abstract: During bone remodelling, osteoclasts induce chemotaxis of osteoblasts and yet maintain spatial segregation. We show that osteoclasts express the repulsive guidance factor Semaphorin 4D and induce contact inhibition of locomotion (CIL) in osteoblasts through its receptor Plexin-B1. To examine causality and elucidate how localized Plexin-B1 stimulation may spatiotemporally coordinate its downstream targets in guiding cell migration, we develop an optogenetic tool for Plexin-B1 designated optoPlexin. Precise optoPlexin activation at the leading edge of migrating osteoblasts readily induces local retraction and, unexpectedly, distal protrusions to steer cells away. These morphological changes are accompanied by reorganization of Myosin II, PIP3, adhesion and active Cdc42. We attribute the resultant repolarization to RhoA/ROCK-mediated redistribution of β-Pix, which activates Cdc42 and promotes protrusion. Thus, our data demonstrate a causal role of Plexin-B1 for CIL in osteoblasts and reveals a previously unknown effect of Semaphorin signalling on spatial distribution of an activator of cell migration.
Submit a new publication to our database