Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 25 of 217 results
1.

Optogenetically Activatable MLKL as a Standalone Functional Module for Necroptosis and Therapeutic Applications in Antitumoral Immunity.

blue CRY2/CRY2 BT-549 HeLa MDA-MB-231 Signaling cascade control Cell death
Adv Sci (Weinh), 8 Feb 2025 DOI: 10.1002/advs.202412393 Link to full text
Abstract: Necroptosis plays a crucial role in the progression of various diseases and has gained substantial attention for its potential to activate antitumor immunity. However, the complex signaling networks that regulate necroptosis have made it challenging to fully understand its mechanisms and translate this knowledge into therapeutic applications. To address these challenges, an optogenetically activatable necroptosis system is developed that allows for precise spatiotemporal control of key necroptosis regulators, bypassing complex upstream signaling processes. The system, specifically featuring optoMLKL, demonstrates that it can rapidly assemble into functional higher-order "hotspots" within cellular membrane compartments, independent of RIPK3-mediated phosphorylation. Moreover, the functional module of optoMLKL significantly enhances innate immune responses by promoting the release of iDAMPs and cDAMPs, which are critical for initiating antitumor immunity. Furthermore, optoMLKL exhibits antitumor effects when activated in patient-derived pancreatic cancer organoids, highlighting its potential for clinical application. These findings will pave the way for innovative cancer therapies by leveraging optogenetic approaches to precisely control and enhance necroptosis.
2.

AGS3-based optogenetic GDI induces GPCR-independent Gβγ signalling and macrophage migration.

blue CRY2/CIB1 HeLa RAW264.7 Signaling cascade control
Open Biol, 5 Feb 2025 DOI: 10.1098/rsob.240181 Link to full text
Abstract: G-protein-coupled receptors (GPCRs) are efficient guanine nucleotide exchange factors (GEFs) and exchange GDP to GTP on the Gα subunit of G-protein heterotrimers in response to various extracellular stimuli, including neurotransmitters and light. GPCRs primarily broadcast signals through activated G proteins, GαGTP and free Gβγ and are major disease drivers. Evidence shows that the ambient low threshold signalling required for cells is likely supplemented by signalling regulators such as non-GPCR GEFs and guanine nucleotide dissociation inhibitors (GDIs). Activators of G-protein signalling 3 (AGS3) are recognized as a GDI involved in multiple health and disease-related processes. Nevertheless, understanding of AGS3 is limited, and no significant information is available on its structure-function relationship or signalling regulation in living cells. Here, we employed in silico structure-guided engineering of a novel optogenetic GDI, based on the AGS3's G-protein regulatory motif, to understand its GDI activity and induce standalone Gβγ signalling in living cells on optical command. Our results demonstrate that plasma membrane recruitment of OptoGDI efficiently releases Gβγ, and its subcellular targeting generated localized PIP3 and triggered macrophage migration. Therefore, we propose OptoGDI as a powerful tool for optically dissecting GDI-mediated signalling pathways and triggering GPCR-independent Gβγ signalling in cells and in vivo.
3.

A Chemogenetic Toolkit for Inducible, Cell Type-Specific Actin Disassembly.

blue AsLOV2 HeLa Control of cytoskeleton / cell motility / cell shape
Small Methods, 31 Jan 2025 DOI: 10.1002/smtd.202401522 Link to full text
Abstract: The actin cytoskeleton and its nanoscale organization are central to all eukaryotic cells-powering diverse cellular functions including morphology, motility, and cell division-and is dysregulated in multiple diseases. Historically studied largely with purified proteins or in isolated cells, tools to study cell type-specific roles of actin in multicellular contexts are greatly needed. DeActs are recently created, first-in-class genetic tools for perturbing actin nanostructures and dynamics in specific cell types across diverse eukaryotic model organisms. Here, ChiActs are introduced, the next generation of actin-perturbing genetic tools that can be rapidly activated in cells and optogenetically targeted to distinct subcellular locations using light. ChiActs are composed of split halves of DeAct-SpvB, whose potent actin disassembly-promoting activity is restored by chemical-induced dimerization or allosteric switching. It is shown that ChiActs function to rapidly induce actin disassembly in several model cell types and are able to perturb actin-dependent nano-assembly and cellular functions, including inhibiting lamellipodial protrusions and membrane ruffling, remodeling mitochondrial morphology, and reorganizing chromatin by locally constraining actin disassembly to specific subcellular compartments. ChiActs thus expand the toolbox of genetically-encoded tools for perturbing actin in living cells, unlocking studies of the many roles of actin nano-assembly and dynamics in complex multicellular systems.
4.

A modular toolbox for the optogenetic deactivation of transcription.

blue AsLOV2 cpLOVTRAP LOVTRAP HEK293T HeLa Hep G2 Neuro-2a U-2 OS Endogenous gene expression
Nucleic Acids Res, 24 Jan 2025 DOI: 10.1093/nar/gkae1237 Link to full text
Abstract: Light-controlled transcriptional activation is a commonly used optogenetic strategy that allows researchers to regulate gene expression with high spatiotemporal precision. The vast majority of existing tools are, however, limited to light-triggered induction of gene expression. Here, we inverted this mode of action and created optogenetic systems capable of efficiently terminating transcriptional activation in response to blue light. First, we designed highly compact regulators by photo-controlling the VP16 (pcVP16) transactivation peptide. Then, applying a two-hybrid strategy, we engineered LOOMINA (light off-operated modular inductor of transcriptional activation), a versatile transcriptional control platform for mammalian cells that is compatible with various effector proteins. Leveraging the flexibility of CRISPR systems, we combined LOOMINA with dCas9 to control transcription with blue light from endogenous promoters with exceptionally high dynamic ranges in multiple cell lines. Functionally and mechanistically, the versatile LOOMINA platform and the exceptionally compact pcVP16 transactivator represent valuable additions to the optogenetic repertoire for transcriptional regulation.
5.

Optogenetics Methods and Protocols

blue green red AsLOV2 CcaS/CcaR Cph1 CRY2/CIB1 CRY2olig DrBphP iLID LOVTRAP Magnets PAL PhyB/PIF6 TtCBD TULIP VVD YtvA 3T3-L1 B. subtilis Cos-7 E. coli H9c2 HaCaT HEK293T HeLa HFF-1 Jurkat MDA-MB-231 MKN28 mouse in vivo primary mouse T cells S. cerevisiae Schneider 2 U-2 OS Y. enterocolitica zebrafish in vivo
Methods Mol Biol, 26 Dec 2024 DOI: 10.1007/978-1-0716-4047-0 Link to full text
Abstract: This volume explores the latest advancements in the field of optogenetics and how it uses cellular light-sensing components and genetic engineering to control proteins and biological processes. The book chapters are organized into four parts. Part One focuses on intracellular optogenetic components for control of specific cell functions; Part Two looks at externally supplied light regulators that do not require genetic manipulation of target cells; Part Three highlights optogenetic control of organelles, and Part Four introduces technical tools required for light induction in optogenetic experiments, as well as a method for performing and analyzing optogenetic cell-cell adhesion. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Cutting-edge and practical, Optogenetics: Methods and Protocols is a valuable resource to help researchers understand and apply the concepts of optogenetics and the underlying bioengineering principles, and establish the required technical light-illumination setups for administering light inputs and analysis of experimental outcomes.
6.

Optogenetically Induced Microtubule Acetylation Unveils the Molecular Dynamics of Actin-Microtubule Crosstalk in Directed Cell Migration.

blue AsLOV2 HeLa isolated MEFs Control of cytoskeleton / cell motility / cell shape
bioRxiv, 2 Dec 2024 DOI: 10.1101/2024.12.01.626286 Link to full text
Abstract: Microtubule acetylation is implicated in regulating cell motility, yet its physiological role in directional migration and the underlying molecular mechanisms have remained unclear. This knowledge gap has persisted primarily due to a lack of tools capable of rapidly manipulating microtubule acetylation in actively migrating cells. To overcome this limitation and elucidate the causal relationship between microtubule acetylation and cell migration, we developed a novel optogenetic actuator, optoTAT, which enables precise and rapid induction of microtubule acetylation within minutes in live cells. Using optoTAT, we observed striking and rapid responses at both molecular and cellular level. First, microtubule acetylation triggers release of the RhoA activator GEF-H1 from sequestration on microtubules. This release subsequently enhances actomyosin contractility and drives focal adhesion maturation. These subcellular processes collectively promote sustained directional cell migration. Our findings position GEF-H1 as a critical molecular responder to microtubule acetylation in the regulation of directed cell migration, revealing a dynamic crosstalk between the actin and microtubule cytoskeletal networks.
7.

Genetically-stable engineered optogenetic gene switches modulate spatial cell morphogenesis in two- and three-dimensional tissue cultures.

blue red EL222 PhyB/PIF6 TULIP CHO-K1 HEK293 HEK293T HeLa Transgene expression Cell death Developmental processes
Nat Commun, 2 Dec 2024 DOI: 10.1038/s41467-024-54350-7 Link to full text
Abstract: Recent advances in tissue engineering have been remarkable, yet the precise control of cellular behavior in 2D and 3D cultures remains challenging. One approach to address this limitation is to genomically engineer optogenetic control of cellular processes into tissues using gene switches that can operate with only a few genomic copies. Here, we implement blue and red light-responsive gene switches to engineer genomically stable two- and three-dimensional mammalian tissue models. Notably, we achieve precise control of cell death and morphogen-directed patterning in 2D and 3D tissues by optogenetically regulating cell necroptosis and synthetic WNT3A signaling at high spatiotemporal resolution. This is accomplished using custom-built patterned LED systems, including digital mirrors and photomasks, as well as laser techniques. These advancements demonstrate the capability of precise spatiotemporal modulation in tissue engineering and open up new avenues for developing programmable 3D tissue and organ models, with significant implications for biomedical research and therapeutic applications.
8.

A sensitive red/far-red photoswitch for controllable gene therapy in mouse models of metabolic diseases.

red DrBphP FnBphP PnBphP ATDC-5 Hana3A HEK293T HeLa hMSCs mouse in vivo Transgene expression Endogenous gene expression
Nat Commun, 27 Nov 2024 DOI: 10.1038/s41467-024-54781-2 Link to full text
Abstract: Red light optogenetic systems are in high demand for the precise control of gene expression for gene- and cell-based therapies. Here, we report a red/far-red light-inducible photoswitch (REDLIP) system based on the chimeric photosensory protein FnBphP (Fn-REDLIP) or PnBphP (Pn-REDLIP) and their interaction partner LDB3, which enables efficient dynamic regulation of gene expression with a timescale of seconds without exogenous administration of a chromophore in mammals. We use the REDLIP system to establish the REDLIP-mediated CRISPR-dCas9 (REDLIPcas) system, enabling optogenetic activation of endogenous target genes in mammalian cells and mice. The REDLIP system is small enough to support packaging into adeno-associated viruses (AAVs), facilitating its therapeutic application. Demonstrating its capacity to treat metabolic diseases, we show that an AAV-delivered Fn-REDLIP system achieved optogenetic control of insulin expression to effectively lower blood glucose levels in type 1 diabetes model mice and control an anti-obesity therapeutic protein (thymic stromal lymphopoietin, TSLP) to reduce body weight in obesity model mice. REDLIP is a compact and sensitive optogenetic tool for reversible and non-invasive control that can facilitate basic biological and biomedical research.
9.

Three-Color Protein Photolithography with Green, Red, and Far-Red Light.

green TtCBD E. coli HeLa in vitro Control of cell-cell / cell-material interactions
Small, 18 Oct 2024 DOI: 10.1002/smll.202405687 Link to full text
Abstract: Protein photolithography is an invaluable tool for generating protein microchips and regulating interactions between cells and materials. However, the absence of light-responsive molecules that allow for the copatterning of multiple functional proteins with biocompatible visible light poses a significant challenge. Here, a new approach for photopatterning three distinct proteins on a single surface by using green, red, and far-red light is reported. The cofactor of the green light-sensitive protein CarH is engineered such that it also becomes sensitive to red and far-red light. These new cofactors are shown to be compatible with two CarH-based optogenetic tools to regulate bacterial cell-cell adhesions and gene expression in mammalian cells with red and far-red light. Further, by incorporating different CarH variants with varying light sensitivities in layer-by-layer (LbL) multiprotein films, specific layers within the films, along with other protein layers on top are precisely removed by using different colors of light, all with high spatiotemporal accuracy. Notably, with these three distinct colors of visible light, it is possible to incorporate diverse proteins under mild conditions in LbL films based on the reliable interaction between Ni2+- nitrilotriacetic acid (NTA) groups and polyhistidine-tags (His-tags)on the proteins and their subsequent photopatterning. This approach has potential applications spanning biofabrication, material engineering, and biotechnology.
10.

Advanced deep-tissue imaging and manipulation enabled by biliverdin reductase knockout.

near-infrared red BphP1/Q-PAS1 DrBphP iLight 4T1 HeLa mouse in vivo murine lung endothelial cells primary mouse cortical neurons primary mouse fibroblasts Transgene expression
bioRxiv, 18 Oct 2024 DOI: 10.1101/2024.10.18.619161 Link to full text
Abstract: We developed near-infrared (NIR) photoacoustic and fluorescence probes, as well as optogenetic tools from bacteriophytochromes, and enhanced their performance using biliverdin reductase-A knock-out model (Blvra-/-). Blvra-/- elevates endogenous heme-derived biliverdin chromophore for bacteriophytochrome-derived NIR constructs. Consequently, light-controlled transcription with IsPadC-based optogenetic tool improved up to 25-fold compared to wild-type cells, with 100-fold activation in Blvra-/- neurons. In vivo, light-induced insulin production in Blvra-/- reduced blood glucose in diabetes by ∼60%, indicating high potential for optogenetic therapy. Using 3D photoacoustic, ultrasound, and two-photon fluorescence imaging, we overcame depth limitations of recording NIR probes. We achieved simultaneous photoacoustic imaging of DrBphP in neurons and super-resolution ultrasound localization microscopy of blood vessels ∼7 mm deep in the brain, with intact scalp and skull. Two-photon microscopy provided cell-level resolution of miRFP720-expressing neurons ∼2.2 mm deep. Blvra-/- significantly enhances efficacy of biliverdin-dependent NIR systems, making it promising platform for interrogation and manipulation of biological processes.
11.

C9orf72 poly-PR forms anisotropic condensates causative of nuclear TDP-43 pathology.

blue CRY2/CRY2 CRY2olig HeLa hESCs Organelle manipulation
iScience, 14 Sep 2024 DOI: 10.1016/j.isci.2024.110937 Link to full text
Abstract: Proteinaceous inclusions formed by C9orf72-derived dipeptide-repeat (DPR) proteins are a histopathological hallmark in ∼50% of familial amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD) cases. However, DPR aggregation/inclusion formation could not be efficiently recapitulated in cell models for four out of five DPRs. In this study, using optogenetics, we achieved chemical-free poly-PR condensation/aggregation in cultured cells including human motor neurons, with spatial and temporal control. Strikingly, nuclear poly-PR condensates had anisotropic, hollow-center appearance, resembling TDP-43 anisosomes, and their growth was limited by RNA. These condensates induced abnormal TDP-43 granulation in the nucleus without stress response activation. Cytoplasmic poly-PR aggregates forming under prolonged opto-stimulation were more persistent than its nuclear condensates, selectively sequestered TDP-43 in a demixed state and surrounded spontaneous stress granules. Thus, poly-PR condensation accompanied by nuclear TDP-43 dysfunction may constitute an early pathological event in C9-ALS/FTD. Anisosome-type condensates of disease-linked proteins may represent a common molecular species in neurodegenerative disease.
12.

Optogenetic tools for inducing organelle membrane rupture.

blue AsLOV2 HeLa Organelle manipulation
bioRxiv, 13 Aug 2024 DOI: 10.1101/2024.08.13.607738 Link to full text
Abstract: Disintegration of organelle membranes induces various cellular responses and has pathological consequences, including autoinflammatory diseases and neurodegeneration. Establishing methods to induce membrane rupture of organelles of interest is essential to analyze the downstream effects of membrane rupture; however, the spatiotemporal induction of rupture of specific membranes remains challenging. Here, we develop a series of optogenetic tools to induce organelle membrane rupture by using engineered Bcl-2-associated X protein (BAX), whose primary function is to form membrane pores in the outer mitochondrial membrane (OMM) during apoptosis. When BAX is forced to target mitochondria, lysosomes, or the endoplasmic reticulum (ER) by replacing its C-terminal transmembrane domain (TMD) with organelle-targeting sequences, the BAX mutants rupture their target membranes. To regulate the activity of organelle-targeted BAX, the photosensitive light-oxygen-voltage-sensing 2 (LOV2) domain is fused to the N-terminus of BAX. The resulting LOV2–BAX fusion protein exhibits blue light–dependent membrane-rupture activity on various organelles, including mitochondria, the ER, and lysosomes. Thus, LOV2–BAX enables spatiotemporal induction of membrane rupture across a broad range of organelles, expanding research opportunities on the consequences of organelle membrane disruption.
13.

Optogenetic Strategies for Optimizing the Performance of Phospholipids Biosensors.

blue cpLOV2 CRY2/CIB1 HEK293T HeLa Organelle manipulation
Adv Sci (Weinh), 29 Jul 2024 DOI: 10.1002/advs.202403026 Link to full text
Abstract: High-performance biosensors play a crucial role in elucidating the intricate spatiotemporal regulatory roles and dynamics of membrane phospholipids. However, enhancing the sensitivity and imaging performance remains a significant challenge. Here, optogenetic-based strategies are presented to optimize phospholipid biosensors. These strategies involves presequestering unbound biosensors in the cell nucleus and regulating their cytosolic levels with blue light to minimize background signal interference in phospholipid detection, particularly under conditions of high expression levels of biosensor. Furthermore, optically controlled phase separation and the SunTag system are employed to generate punctate probes for substrate detection, thereby amplifying biosensor signals and enhancing visualization of the detection process. These improved phospholipid biosensors hold great potential for enhancing the understanding of the spatiotemporal dynamics and regulatory roles of membrane lipids in live cells and the methodological insights in this study might be valuable for developing other high-performance biosensors.
14.

TPM4 condensates glycolytic enzymes to fuel actin reorganization under hyperosmotic stress.

blue CRY2/CRY2 HEK293T HeLa MDA-MB-231 Organelle manipulation
bioRxiv, 14 Jul 2024 DOI: 10.1101/2024.07.09.602822 Link to full text
Abstract: Actin homeostasis is fundamental for cell structure and consumes a large portion of cellular ATP. It has been documented in the literature that certain glycolytic enzymes can interact with actin, indicating an intricate interplay between the cytoskeleton and cellular metabolism. Here we report that hyperosmotic stress triggers actin severing and subsequent phase separation of the actin-binding protein TPM4. TPM4 condensates glycolytic enzymes such as HK2, PFKM, and PKM2, and adhere to and wrap around actin filaments. Notably, the condensates of TPM4 and glycolytic enzymes are enriched of NADH and ATP, suggestive of their functional importance in cell metabolism. At cellular level, actin filaments assembly is enhanced upon hyperosmotic stress and TPM4 condensation, while depletion of TPM4 impaired osmolarity-induced actin reorganization. At tissue level, co-localized condensates of TPM4 and glycolytic enzymes are observed in renal tissues subjected to hyperosmotic stress. Together, our findings suggest that stress-induced actin perturbation may act on TPM4 to organize glycolytic hubs that tether energy production to cytoskeletal reorganization.
15.

Turn-on protein switches for controlling actin binding in cells.

blue AsLOV2 HEK293T HeLa MDCK Control of cytoskeleton / cell motility / cell shape
Nat Commun, 11 Jul 2024 DOI: 10.1038/s41467-024-49934-2 Link to full text
Abstract: Within a shared cytoplasm, filamentous actin (F-actin) plays numerous and critical roles across the cell body. Cells rely on actin-binding proteins (ABPs) to organize F-actin and to integrate its polymeric characteristics into diverse cellular processes. Yet, the multitude of ABPs that engage with and shape F-actin make studying a single ABP’s influence on cellular activities a significant challenge. Moreover, without a means of manipulating actin-binding subcellularly, harnessing the F-actin cytoskeleton for synthetic biology purposes remains elusive. Here, we describe a suite of designed proteins, Controllable Actin-binding Switch Tools (CASTs), whose actin-binding behavior can be controlled with external stimuli. CASTs were developed that respond to different external inputs, providing options for turn-on kinetics and enabling orthogonality and multiplexing. Being genetically encoded, we show that CASTs can be inserted into native protein sequences to control F-actin association locally and engineered into structures to control cell and tissue shape and behavior.
16.

Phospholipase C beta 1 in the dentate gyrus gates fear memory formation through regulation of neuronal excitability.

blue iLID HeLa mouse in vivo primary mouse hippocampal neurons Signaling cascade control
Sci Adv, 3 Jul 2024 DOI: 10.1126/sciadv.adj4433 Link to full text
Abstract: Memory processes rely on a molecular signaling system that balances the interplay between positive and negative modulators. Recent research has focused on identifying memory-regulating genes and their mechanisms. Phospholipase C beta 1 (PLCβ1), highly expressed in the hippocampus, reportedly serves as a convergence point for signal transduction through G protein-coupled receptors. However, the detailed role of PLCβ1 in memory function has not been elucidated. Here, we demonstrate that PLCβ1 in the dentate gyrus functions as a memory suppressor. We reveal that mice lacking PLCβ1 in the dentate gyrus exhibit a heightened fear response and impaired memory extinction, and this excessive fear response is repressed by upregulation of PLCβ1 through its overexpression or activation using a newly developed optogenetic system. Last, our results demonstrate that PLCβ1 overexpression partially inhibits exaggerated fear response caused by traumatic experience. Together, PLCβ1 is crucial in regulating contextual fear memory formation and potentially enhancing the resilience to trauma-related conditions.
17.

AGS3-based optogenetic GDI induces GPCR-independent Gβγ signaling and macrophage migration.

blue CRY2/CIB1 HeLa RAW264.7 Signaling cascade control
bioRxiv, 5 Jun 2024 DOI: 10.1101/2024.06.04.597473 Link to full text
Abstract: G protein-coupled receptors (GPCRs) are efficient Guanine nucleotide exchange factors (GEFs) and exchange GDP to GTP on the Gα subunit of G protein heterotrimers in response to various extracellular stimuli, including neurotransmitters and light. GPCRs primarily broadcast signals through activated G proteins, GαGTP, and free Gβγ and are major disease drivers. Evidence shows that the ambient low threshold signaling required for cells is likely supplemented by signaling regulators such as non-GPCR GEFs and Guanine nucleotide Dissociation Inhibitors (GDIs). Activators of G protein Signaling 3 (AGS3) are recognized as a GDI involved in multiple health and disease-related processes. Nevertheless, understanding of AGS3 is limited, and no significant information is available on its structure-function relationship or signaling regulation in living cells. Here, we employed in silico structure-guided engineering of a novel optogenetic GDI, based on the AGS3’s G protein regulatory (GPR) motif, to understand its GDI activity and induce standalone Gβγ signaling in living cells on optical command. Our results demonstrate that plasma membrane recruitment of OptoGDI efficiently releases Gβγ, and its subcellular targeting generated localized PIP3 and triggered macrophage migration. Therefore, we propose OptoGDI as a powerful tool for optically dissecting GDI-mediated signaling pathways and triggering GPCR-independent Gβγ signaling in cells and in vivo.
18.

Reversible Photoregulation of Cell-Cell Adhesions With Opto-E-cadherin.

blue AsLOV2 A-431 HeLa MDA-MB-231 NCTC clone 929
Bio Protoc, 20 May 2024 DOI: 10.21769/bioprotoc.4995 Link to full text
Abstract: The cell-cell adhesion molecule E-cadherin has been intensively studied due to its prevalence in tissue function and its spatiotemporal regulation during epithelial-to-mesenchymal cell transition. Nonetheless, regulating and studying the dynamics of it has proven challenging. We developed a photoswitchable version of E-cadherin, named opto-E-cadherin, which can be toggled OFF with blue light illumination and back ON in the dark. Herein, we describe easy-to-use methods to test and characterise opto-E- cadherin cell clones for downstream experiments. Key features • This protocol describes how to implement optogenetic cell-cell adhesion molecules effectively (described here on the basis of opto-E-cadherin), while highlighting possible pitfalls. • Utilises equipment commonly found in most laboratories with high ease of use. • Phenotype screening is easy and done within a few hours (comparison of cell clusters in the dark vs. blue light in an aggregation assay). • Three different functionality assay systems are described. • After the cell line is established, all experiments can be performed within three days.
19.

Liebig’s law of the minimum in the TGF-β/SMAD pathway.

blue CRY2/CIB1 HeLa Signaling cascade control
PLoS Comput Biol, 16 May 2024 DOI: 10.1371/journal.pcbi.1012072 Link to full text
Abstract: Cells use signaling pathways to sense and respond to their environments. The transforming growth factor-β (TGF-β) pathway produces context-specific responses. Here, we combined modeling and experimental analysis to study the dependence of the output of the TGF-β pathway on the abundance of signaling molecules in the pathway. We showed that the TGF-β pathway processes the variation of TGF-β receptor abundance using Liebig’s law of the minimum, meaning that the output-modifying factor is the signaling protein that is most limited, to determine signaling responses across cell types and in single cells. We found that the abundance of either the type I (TGFBR1) or type II (TGFBR2) TGF-β receptor determined the responses of cancer cell lines, such that the receptor with relatively low abundance dictates the response. Furthermore, nuclear SMAD2 signaling correlated with the abundance of TGF-β receptor in single cells depending on the relative expression levels of TGFBR1 and TGFBR2. A similar control principle could govern the heterogeneity of signaling responses in other signaling pathways.
20.

OptoProfilin: A Single Component Biosensor of Applied Cellular Stress.

blue CRY2/CRY2 HEK293T HeLa Neuro-2a NIH/3T3 Control of cytoskeleton / cell motility / cell shape Organelle manipulation
Chembiochem, 8 Mar 2024 DOI: 10.1002/cbic.202400007 Link to full text
Abstract: The actin cytoskeleton is a biosensor of cellular stress and a potential prognosticator of human disease. In particular, aberrant cytoskeletal structures such as stress granules formed in response to energetic and oxidative stress are closely linked to ageing, cancer, cardiovascular disease, and viral infection. Whether these cytoskeletal phenomena can be harnessed for the development of biosensors for cytoskeletal dysfunction and, by extension, disease progression, remains an open question. In this work, we describe the design and development of an optogenetic iteration of profilin, an actin monomer binding protein with critical functions in cytoskeletal dynamics. We demonstrate that this optically activated profilin ('OptoProfilin') can act as an optically triggered biosensor of applied cellular stress in select immortalized cell lines. Notably, OptoProfilin is a single component biosensor, likely increasing its utility for experimentalists. While a large body of preexisting work closely links profilin activity with cellular stress and neurodegenerative disease, this, to our knowledge, is the first example of profilin as an optogenetic biosensor of stress-induced changes in the cytoskeleton.
21.

Using split protein reassembly strategy to optically control PLD enzymatic activity.

blue CRY2/CIB1 iLID HEK293T HeLa Signaling cascade control Organelle manipulation
bioRxiv, 30 Jan 2024 DOI: 10.1101/2024.01.27.577557 Link to full text
Abstract: Phospholipase D (PLD) and phosphatidic acid (PA) play a spatio-temporal role in regulating diverse cellular activities. Although current methodologies enable optical control of the subcellular localization of PLD and by which influence local PLD enzyme activity, the overexpression of PLD elevates the basal PLD enzyme activity and further leads to increased PA levels in cells. In this study, we employed a split protein reassembly strategy and optogenetic techniques to modify superPLD (a PLDPMF variant with a high basal activity). We splited this variants into two HKD domains and fused these domains with optogenetic elements and by which we achieved light-mediated dimerization of the two HKD proteins and then restored the PLD enzymatic activity.
22.

Programmable RNA base editing with photoactivatable CRISPR-Cas13.

blue Magnets HEK293T HeLa HT-1080 MCF7 mouse in vivo Neuro-2a Nucleic acid editing
Nat Commun, 22 Jan 2024 DOI: 10.1038/s41467-024-44867-2 Link to full text
Abstract: CRISPR-Cas13 is widely used for programmable RNA interference, imaging, and editing. In this study, we develop a light-inducible Cas13 system called paCas13 by fusing Magnet with fragment pairs. The most effective split site, N351/C350, was identified and found to exhibit a low background and high inducibility. We observed significant light-induced perturbation of endogenous transcripts by paCas13. We further present a light-inducible base-editing system, herein called the padCas13 editor, by fusing ADAR2 to catalytically inactive paCas13 fragments. The padCas13 editor enabled reversible RNA editing under light and was effective in editing A-to-I and C-to-U RNA bases, targeting disease-relevant transcripts, and fine-tuning endogenous transcripts in mammalian cells in vitro. The padCas13 editor was also used to adjust post-translational modifications and demonstrated the ability to activate target transcripts in a mouse model in vivo. We therefore present a light-inducible RNA-modulating technique based on CRISPR-Cas13 that enables target RNAs to be diversely manipulated in vitro and in vivo, including through RNA degradation and base editing. The approach using the paCas13 system can be broadly applicable to manipulating RNA in various disease states and physiological processes, offering potential additional avenues for research and therapeutic development.
23.

Optogenetic induction of caspase-8 mediated apoptosis by employing Arabidopsis cryptochrome 2.

blue CRY2/CIB1 CRY2/CRY2 HEK293T HeLa Signaling cascade control Cell death
Sci Rep, 27 Dec 2023 DOI: 10.1038/s41598-023-50561-y Link to full text
Abstract: Apoptosis, a programmed cell death mechanism, is a regulatory process controlling cell proliferation as cells undergo demise. Caspase-8 serves as a pivotal apoptosis-inducing factor that initiates the death receptor-mediated apoptosis pathway. In this investigation, we have devised an optogenetic method to swiftly modulate caspase-8 activation in response to blue light. The cornerstone of our optogenetic tool relies on the PHR domain of Arabidopsis thaliana cryptochrome 2, which self-oligomerizes upon exposure to blue light. In this study, we have developed two optogenetic approaches for rapidly controlling caspase-8 activation in response to blue light in cellular systems. The first strategy, denoted as Opto-Casp8-V1, entails the fusion expression of the Arabidopsis blue light receptor CRY2 N-terminal PHR domain with caspase-8. The second strategy, referred to as Opto-Casp8-V2, involves the independent fusion expression of caspase-8 with the PHR domain and the CRY2 blue light-interacting protein CIB1 N-terminal CIB1N. Upon induction with blue light, PHR undergoes aggregation, leading to caspase-8 aggregation. Additionally, the blue light-dependent interaction between PHR and CIB1N also results in caspase-8 aggregation. We have validated these strategies in both HEK293T and HeLa cells. The findings reveal that both strategies are capable of inducing apoptosis, with Opto-Casp8-V2 demonstrating significantly superior efficiency compared to Opto-Casp8-V1.
24.

Rho GTPase activity crosstalk mediated by Arhgef11 and Arhgef12 coordinates cell protrusion-retraction cycles.

blue AsLOV2 A-431 HeLa Neuro-2a NIH/3T3 U-2 OS Control of cytoskeleton / cell motility / cell shape
Nat Commun, 15 Dec 2023 DOI: 10.1038/s41467-023-43875-y Link to full text
Abstract: Rho GTPases play a key role in the spatio-temporal coordination of cytoskeletal dynamics during cell migration. Here, we directly investigate crosstalk between the major Rho GTPases Rho, Rac and Cdc42 by combining rapid activity perturbation with activity measurements in mammalian cells. These studies reveal that Rac stimulates Rho activity. Direct measurement of spatio-temporal activity patterns show that Rac activity is tightly and precisely coupled to local cell protrusions, followed by Rho activation during retraction. Furthermore, we find that the Rho-activating Lbc-type GEFs Arhgef11 and Arhgef12 are enriched at transient cell protrusions and retractions and recruited to the plasma membrane by active Rac. In addition, their depletion reduces activity crosstalk, cell protrusion-retraction dynamics and migration distance and increases migration directionality. Thus, our study shows that Arhgef11 and Arhgef12 facilitate exploratory cell migration by coordinating cell protrusion and retraction by coupling the activity of the associated regulators Rac and Rho.
25.

Spatiotemporal Optical Control of Gαq-PLCβ Interactions.

blue CRY2/CIB1 iLID HeLa RAW264.7 Signaling cascade control
ACS Synth Biol, 13 Dec 2023 DOI: 10.1021/acssynbio.3c00490 Link to full text
Abstract: Cells experience time-varying and spatially heterogeneous chemokine signals in vivo, activating cell surface proteins including G protein-coupled receptors (GPCRs). The Gαq pathway activation by GPCRs is a major signaling axis with broad physiological and pathological significance. Compared with other Gα members, GαqGTP activates many crucial effectors, including PLCβ (Phospholipase Cβ) and Rho GEFs (Rho guanine nucleotide exchange factors). PLCβ regulates many key processes, such as hematopoiesis, synaptogenesis, and cell cycle, and is therefore implicated in terminal-debilitating diseases, including cancer, epilepsy, Huntington's Disease, and Alzheimer's Disease. However, due to a lack of genetic and pharmacological tools, examining how the dynamic regulation of PLCβ signaling controls cellular physiology has been difficult. Since activated PLCβ induces several abrupt cellular changes, including cell morphology, examining how the other pathways downstream of Gq-GPCRs contribute to the overall signaling has also been difficult. Here we show the engineering, validation, and application of a highly selective and efficient optogenetic inhibitor (Opto-dHTH) to completely disrupt GαqGTP-PLCβ interactions reversibly in user-defined cellular-subcellular regions on optical command. Using this newly gained PLCβ signaling control, our data indicate that the molecular competition between RhoGEFs and PLCβ for GαqGTP determines the potency of Gq-GPCR-governed directional cell migration.
Submit a new publication to our database