Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: host:"Flp-In-T-REx293"
Showing 1 - 4 of 4 results
1.

Shining light on drug discovery: optogenetic screening for TopBP1 biomolecular condensate inhibitors.

blue CRY2/CRY2 Flp-In-T-REx293 Organelle manipulation
NAR Cancer, 3 Nov 2025 DOI: 10.1093/narcan/zcaf041 Link to full text
Abstract: Human topoisomerase IIβ binding protein 1 (TopBP1) is a scaffold protein involved in DNA replication initiation, DNA repair, transcription regulation, and checkpoint activation. TopBP1 forms nuclear condensates that act as a molecular switch to amplify ATR activity and promote the activation of the checkpoint effector kinase Chk1. In cancer cells, ATR activity is crucial to tolerate the intrinsically high level of DNA lesions and obstacles that block replication fork progression. Thus, ATR inhibitors are currently tested in clinical trials, often in combination with chemotherapy drugs. However, resistance and toxicity are still major issues. The weak interactions that hold TopBP1 condensates together are highly sensitive to changes in the cellular milieu, suggesting that small molecules may alter the formation of TopBP1 condensates. Here, we developed a high-throughput screening system to identify TopBP1 condensation modulators. This system allowed us to identify FDA-approved drugs, including thimerosal and quinacrine, that inhibit TopBP1 condensation and block the activation of ATR/Chk1 signaling. Mechanistically, quinacrine impaired TopBP1's ability to associate with chromatin, thereby interfering with its capacity to form condensates. Furthermore, quinacrine enhanced the therapeutic efficacy of 5-fluorouracil and irinotecan, components of the clinically used FOLFIRI regimen in a mouse model of peritoneal carcinomatosis from colorectal cancer.
2.

KIF2C condensation concentrates PLK1 and phosphorylated BRCA2 on kinetochore microtubules in mitosis.

blue CRY2/CRY2 Flp-In-T-REx293 Organelle manipulation
Nucleic Acids Res, 6 Jun 2025 DOI: 10.1093/nar/gkaf476 Link to full text
Abstract: During mitosis, the microtubule depolymerase KIF2C, the tumor suppressor BRCA2, and the kinase PLK1 contribute to the control of kinetochore-microtubule attachments. Both KIF2C and BRCA2 are phosphorylated by PLK1, and BRCA2 phosphorylated at T207 (BRCA2-pT207) serves as a docking site for PLK1. Reducing this interaction results in unstable microtubule-kinetochore attachments. Here we identified that KIF2C also directly interacts with BRCA2-pT207. Indeed, the N-terminal domain of KIF2C adopts a Tudor/PWWP/MBT fold that unexpectedly binds to phosphorylated motifs. Using an optogenetic platform, we found that KIF2C forms membrane-less organelles that assemble through interactions mediated by this phospho-binding domain. KIF2C condensation does not depend on BRCA2-pT207 but requires active Aurora B and PLK1 kinases. Moreover, it concentrates PLK1 and BRCA2-pT207 in an Aurora B-dependent manner. Finally, KIF2C depolymerase activity promotes the formation of KIF2C condensates, but strikingly, KIF2C condensates exclude tubulin: they are located on microtubules, especially at their extremities. Altogether, our results suggest that, during the attachment of kinetochores to microtubules, the assembly of KIF2C condensates amplifies PLK1 and KIF2C catalytic activities and spatially concentrates BRCA2-pT207 at the extremities of microtubules. We propose that this novel and highly regulated mechanism contributes to the control of microtubule-kinetochore attachments, chromosome alignment, and stability.
3.

Combining light-induced aggregation and biotin proximity labeling implicates endolysosomal proteins in early α-synuclein oligomerization.

blue CRY2olig Flp-In-T-REx293 HEK293T human IPSCs Organelle manipulation Neuronal activity control
iScience, 6 Jun 2025 DOI: 10.1016/j.isci.2025.112823 Link to full text
Abstract: Alpha-synuclein (α-syn) aggregation is a defining feature of Parkinson's disease (PD) and related synucleinopathies. Despite significant research efforts focused on understanding α-syn aggregation mechanisms, the early stages of this process remain elusive, largely due to limitations in experimental tools that lack the temporal resolution to capture these dynamic events. Here, we introduce UltraID-LIPA, an innovative platform that combines the light-inducible protein aggregation (LIPA) system with the UltraID proximity-dependent biotinylation assay to identify α-syn-interacting proteins and uncover key mechanisms driving its oligomerization. UltraID-LIPA successfully identified 38 α-syn-interacting proteins, including both established and previously unreported candidates, highlighting the accuracy and robustness of the approach. Notably, a strong interaction with endolysosomal and membrane-associated proteins was observed, supporting the hypothesis that interactions with membrane-bound organelles are pivotal in the early stages of α-syn aggregation. This powerful platform provides new insights into dynamic protein aggregation events, enhancing our understanding of synucleinopathies and other proteinopathies.
4.

Formation of Arabidopsis Cryptochrome 2 photobodies in mammalian nuclei: application as an optogenetic DNA damage checkpoint switch.

blue CRY2/CRY2 Flp-In-T-REx293 HEK293T Signaling cascade control
J Biol Chem, 5 Jul 2013 DOI: 10.1074/jbc.m113.493361 Link to full text
Abstract: Nuclear bodies are discrete suborganelle structures that perform specialized functions in eukaryotic cells. In plant cells, light can induce de novo formation of nuclear bodies called photobodies (PBs) composed of the photosensory pigments, phytochrome (PHY) or cryptochrome (CRY). The mechanisms of formation, the exact compositions, and the functions of plant PBs are not known. Here, we have expressed Arabidopsis CRY2 (AtCRY2) in mammalian cells and analyzed its fate after blue light exposure to understand the requirements for PB formation, the functions of PBs, and their potential use in cell biology. We found that light efficiently induces AtCRY2-PB formation in mammalian cells, indicating that, other than AtCRY2, no plant-specific proteins or nucleic acids are required for AtCRY2-PB formation. Irradiation of AtCRY2 led to its degradation; however, degradation was not dependent upon photobody formation. Furthermore, we found that AtCRY2 photobody formation is associated with light-stimulated interaction with mammalian COP1 E3 ligase. Finally, we demonstrate that by fusing AtCRY2 to the TopBP1 DNA damage checkpoint protein, light-induced AtCRY2 PBs can be used to activate DNA damage signaling pathway in the absence of DNA damage.
Submit a new publication to our database