Showing 1 - 6 of 6 results
1.
Reversible Photoregulation of Cell-Cell Adhesions With Opto-E-cadherin.
Abstract:
The cell-cell adhesion molecule E-cadherin has been intensively studied due to its prevalence in tissue function and its spatiotemporal regulation during epithelial-to-mesenchymal cell transition. Nonetheless, regulating and studying the dynamics of it has proven challenging. We developed a photoswitchable version of E-cadherin, named opto-E-cadherin, which can be toggled OFF with blue light illumination and back ON in the dark. Herein, we describe easy-to-use methods to test and characterise opto-E- cadherin cell clones for downstream experiments. Key features • This protocol describes how to implement optogenetic cell-cell adhesion molecules effectively (described here on the basis of opto-E-cadherin), while highlighting possible pitfalls. • Utilises equipment commonly found in most laboratories with high ease of use. • Phenotype screening is easy and done within a few hours (comparison of cell clusters in the dark vs. blue light in an aggregation assay). • Three different functionality assay systems are described. • After the cell line is established, all experiments can be performed within three days.
2.
Rho GTPase activity crosstalk mediated by Arhgef11 and Arhgef12 coordinates cell protrusion-retraction cycles.
-
Nanda, S
-
Calderon, A
-
Sachan, A
-
Duong, TT
-
Koch, J
-
Xin, X
-
Solouk-Stahlberg, D
-
Wu, YW
-
Nalbant, P
-
Dehmelt, L
Abstract:
Rho GTPases play a key role in the spatio-temporal coordination of cytoskeletal dynamics during cell migration. Here, we directly investigate crosstalk between the major Rho GTPases Rho, Rac and Cdc42 by combining rapid activity perturbation with activity measurements in mammalian cells. These studies reveal that Rac stimulates Rho activity. Direct measurement of spatio-temporal activity patterns show that Rac activity is tightly and precisely coupled to local cell protrusions, followed by Rho activation during retraction. Furthermore, we find that the Rho-activating Lbc-type GEFs Arhgef11 and Arhgef12 are enriched at transient cell protrusions and retractions and recruited to the plasma membrane by active Rac. In addition, their depletion reduces activity crosstalk, cell protrusion-retraction dynamics and migration distance and increases migration directionality. Thus, our study shows that Arhgef11 and Arhgef12 facilitate exploratory cell migration by coordinating cell protrusion and retraction by coupling the activity of the associated regulators Rac and Rho.
3.
Reversible photoregulation of cell-cell adhesions with opto-E-cadherin.
Abstract:
E-cadherin-based cell-cell adhesions are dynamically and locally regulated in many essential processes, including embryogenesis, wound healing and tissue organization, with dysregulation manifesting as tumorigenesis and metastasis. However, the lack of tools that would provide control of the high spatiotemporal precision observed with E-cadherin adhesions hampers investigation of the underlying mechanisms. Here, we present an optogenetic tool, opto-E-cadherin, that allows reversible control of E-cadherin-mediated cell-cell adhesions with blue light. With opto-E-cadherin, functionally essential calcium binding is photoregulated such that cells expressing opto-E-cadherin at their surface adhere to each other in the dark but not upon illumination. Consequently, opto-E-cadherin provides remote control over multicellular aggregation, E-cadherin-associated intracellular signalling and F-actin organization in 2D and 3D cell cultures. Opto-E-cadherin also allows switching of multicellular behaviour between single and collective cell migration, as well as of cell invasiveness in vitro and in vivo. Overall, opto-E-cadherin is a powerful optogenetic tool capable of controlling cell-cell adhesions at the molecular, cellular and behavioural level that opens up perspectives for the study of dynamics and spatiotemporal control of E-cadherin in biological processes.
4.
Interaction between PI3K and the VDAC2 channel tethers Ras-PI3K-positive endosomes to mitochondria and promotes endosome maturation.
Abstract:
Intracellular organelles of mammalian cells communicate with one another during various cellular processes. The functions and molecular mechanisms of such interorganelle association remain largely unclear, however. We here identify voltage-dependent anion channel 2 (VDAC2), a mitochondrial outer membrane protein, as a binding partner of phosphoinositide 3-kinase (PI3K), a regulator of clathrin-independent endocytosis downstream of the small GTPase Ras. VDAC2 tethers endosomes positive for the Ras-PI3K complex to mitochondria in response to cell stimulation with epidermal growth factor and promotes clathrin-independent endocytosis, as well as endosome maturation at membrane association sites. With an optogenetics system to induce mitochondrion-endosome association, we find that, in addition to its structural role in such association, VDAC2 is functionally implicated in the promotion of endosome maturation. The mitochondrion-endosome association thus plays a role in the regulation of clathrin-independent endocytosis and endosome maturation.
5.
Spatially Defined Gene Delivery into Native Cells with the Red Light-Controlled OptoAAV Technology.
Abstract:
The OptoAAV technology allows spatially defined delivery of transgenes into native target cells down to single-cell resolution by the illumination with cell-compatible and tissue-penetrating red light. The system is based on an adeno-associated viral (AAV) vector of serotype 2 with an engineered capsid (OptoAAV) and a photoreceptor-containing adapter protein mediating the interaction of the OptoAAV with the surface of the target cell in response to low doses of red and far-red light. In this article, we first provide detailed protocols for the production, purification, and analysis of the OptoAAV and the adapter protein. Afterward, we describe in detail the application of the OptoAAV system for the light-controlled transduction of human cells with global and patterned illumination. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production, purification, and analysis of PhyB-DARPinEGFR adapter protein Basic Protocol 2: Production, purification, and analysis of OptoAAV Basic Protocol 3: Red light-controlled viral transduction with the OptoAAV system Support Protocol: Spatially resolved transduction of two transgenes with the OptoAAV system.
6.
Spatiotemporally confined red light-controlled gene delivery at single-cell resolution using adeno-associated viral vectors.
-
Hörner, M
-
Jerez-Longres, C
-
Hudek, A
-
Hook, S
-
Yousefi, OS
-
Schamel, WWA
-
Hörner, C
-
Zurbriggen, MD
-
Ye, H
-
Wagner, HJ
-
Weber, W
Abstract:
Methodologies for the controlled delivery of genetic information into target cells are of utmost importance for genetic engineering in both fundamental and applied research. However, available methods for efficient gene transfer into user-selected or even single cells suffer from low throughput, the need for complicated equipment, high invasiveness, or side effects by off-target viral uptake. Here, we engineer an adeno-associated viral (AAV) vector system that transfers genetic information into native target cells upon illumination with cell-compatible red light. This OptoAAV system allows adjustable and spatially resolved gene transfer down to single-cell resolution and is compatible with different cell lines and primary cells. Moreover, the sequential application of multiple OptoAAVs enables spatially resolved transduction with different transgenes. The approach presented is likely extendable to other classes of viral vectors and is expected to foster advances in basic and applied genetic research.