Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: author:"Zhiqi Tian"
Showing 1 - 4 of 4 results
1.

Munc18 modulates syntaxin phase separation to promote exocytosis.

blue VfAU1-LOV PC-12 primary mouse cortical neurons Organelle manipulation
Nat Neurosci, 24 Nov 2025 DOI: 10.1038/s41593-025-02140-9 Link to full text
Abstract: The soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein syntaxin mediates neuronal exocytosis and self-assembles into large clusters in the plasma membrane. The formation and function of these clusters, and whether they promote or inhibit synaptic-vesicle fusion, remain unclear. Here using optogenetic control of syntaxin clustering in vitro and in vivo, as a light-inducible gain-of-function assay, we show that light-enhanced clustering reduces both spontaneous and triggered vesicle fusion, and this impairs mouse hunting behavior. Cluster formation is induced by liquid-liquid phase separation (LLPS) of the SNARE domain of syntaxin. For the regulatory mechanism, Munc18, which is known to alter syntaxin conformation, acts to reduce LLPS for cluster formation, thereby promoting active syntaxin. These results suggest that exocytosis regulation involves LLPS-induced syntaxin clusters that serve as a syntaxin reservoir from which Munc18 captures syntaxin monomers to form a syntaxin-Munc18 complex, setting the stage for efficient fusion.
2.

Modulating inter-mitochondrial contacts to increase membrane potential for mitigating blue light damage.

blue CRY2/CRY2 ARPE-19 C. elegans in vivo HDFn HeLa MCF7 Organelle manipulation
bioRxiv, 25 Oct 2025 DOI: 10.1101/2025.10.24.684455 Link to full text
Abstract: Mitochondrial membrane potential (MMP) is essential for mitochondrial functions, yet current methods for modulating MMP lack precise spatial and temporal control. Here, we present an optogenetic system that enables reversible formation of inter-mitochondrial contacts (mito-contacts) with high spatiotemporal precision. Blue light stimulation induces rapid formation of mito-contacts, which fully dissipate upon cessation of illumination. These light-induced mito-contacts can enhance MMP, leading to increased ATP production under stress conditions. Moreover, in human retinal cells and C. elegans, high MMP induced by mito-contacts alleviates the deleterious effects of prolonged blue light exposure, restoring energy metabolism and extending organismal lifespan. This optogenetic approach provides a powerful tool for modulating MMP and offers potential therapeutic applications for diseases linked to mitochondrial dysfunction.
3.

Optogenetic engineering of lipid droplet spatial organization for tumor suppression.

blue CRY2/CRY2 786-O Hep G2 MCF7 Organelle manipulation
Trends Biotechnol, 1 Jul 2025 DOI: 10.1016/j.tibtech.2025.06.002 Link to full text
Abstract: In cancer cells, lipid droplets (LDs) establish extensive membrane contact sites (MCSs) with mitochondria to facilitate fatty acid transfer and sustain energy production, thus enabling cancer cell survival, in nutrient-deprived tumor microenvironments. However, effective strategies to disrupt these LD-mitochondria interactions remain unavailable. We engineered an optogenetic system to control LD intracellular organization through clustering. Upon blue light stimulation, the system induces LDs to undergo spatial reorganization and form clusters, thereby restricting LD accessibility by reducing the available surface area for mitochondrial interaction. Consequently, this clustering significantly diminishes the number of LD-mitochondria MCSs, suppresses fatty acid transport from LDs to mitochondria during starvation, and ultimately leads to cancer cell death in vitro and tumor growth inhibition in vivo. Collectively, our results demonstrate that optogenetically controlled LD clustering offers a novel approach to impede tumor progression by blocking nutrient flow from LDs to mitochondria.
4.

Light-activated mitochondrial fission through optogenetic control of mitochondria-lysosome contacts.

blue CRY2/CIB1 BHK-21 HeLa human primary dermal fibroblasts PC-12 Organelle manipulation
Nat Commun, 25 Jul 2022 DOI: 10.1038/s41467-022-31970-5 Link to full text
Abstract: Mitochondria are highly dynamic organelles whose fragmentation by fission is critical to their functional integrity and cellular homeostasis. Here, we develop a method via optogenetic control of mitochondria-lysosome contacts (MLCs) to induce mitochondrial fission with spatiotemporal accuracy. MLCs can be achieved by blue-light-induced association of mitochondria and lysosomes through various photoactivatable dimerizers. Real-time optogenetic induction of mitochondrial fission is tracked in living cells to measure the fission rate. The optogenetic method partially restores the mitochondrial functions of SLC25A46-/- cells, which display defects in mitochondrial fission and hyperfused mitochondria. The optogenetic MLCs system thus provides a platform for studying mitochondrial fission and treating mitochondrial diseases.
Submit a new publication to our database