Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 1 of 1 results
1.

Phosphatidic acid is an endogenous negative regulator of PIEZO2 channels and mechanical sensitivity.

blue CRY2/CIB1 Neuro-2a Signaling cascade control
bioRxiv, 2 Mar 2024 DOI: 10.1101/2024.03.01.582964 Link to full text
Abstract: Mechanosensitive PIEZO2 ion channels play roles in touch, proprioception, and inflammatory pain. Currently, there are no small molecule inhibitors that selectively inhibit PIEZO2 over PIEZO1. The TMEM120A protein was shown to inhibit PIEZO2 while leaving PIEZO1 unaffected. Here we find that TMEM120A expression elevates cellular levels of phosphatidic acid and lysophosphatidic acid (LPA), aligning with its structural resemblance to lipid-modifying enzymes. Intracellular application of phosphatidic acid or LPA inhibited PIEZO2, but not PIEZO1 activity. Extended extracellular exposure to the non-hydrolyzable phosphatidic acid and LPA analogue carbocyclic phosphatidic acid (ccPA) also inhibited PIEZO2. Optogenetic activation of phospholipase D (PLD), a signaling enzyme that generates phosphatidic acid, inhibited PIEZO2, but not PIEZO1. Conversely, inhibiting PLD led to increased PIEZO2 activity and increased mechanical sensitivity in mice in behavioral experiments. These findings unveil lipid regulators that selectively target PIEZO2 over PIEZO1, and identify the PLD pathway as a regulator of PIEZO2 activity.
Submit a new publication to our database