Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 5 of 5 results
1.

Optogenetic Strategies for Optimizing the Performance of Phospholipids Biosensors.

blue cpLOV2 CRY2/CIB1 HEK293T HeLa Organelle manipulation
Adv Sci (Weinh), 29 Jul 2024 DOI: 10.1002/advs.202403026 Link to full text
Abstract: High-performance biosensors play a crucial role in elucidating the intricate spatiotemporal regulatory roles and dynamics of membrane phospholipids. However, enhancing the sensitivity and imaging performance remains a significant challenge. Here, optogenetic-based strategies are presented to optimize phospholipid biosensors. These strategies involves presequestering unbound biosensors in the cell nucleus and regulating their cytosolic levels with blue light to minimize background signal interference in phospholipid detection, particularly under conditions of high expression levels of biosensor. Furthermore, optically controlled phase separation and the SunTag system are employed to generate punctate probes for substrate detection, thereby amplifying biosensor signals and enhancing visualization of the detection process. These improved phospholipid biosensors hold great potential for enhancing the understanding of the spatiotemporal dynamics and regulatory roles of membrane lipids in live cells and the methodological insights in this study might be valuable for developing other high-performance biosensors.
2.

Optogenetic therapeutic strategies for diabetes mellitus.

blue cyan green red BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
J Diabetes, Jun 2024 DOI: 10.1111/1753-0407.13557 Link to full text
Abstract: Diabetes mellitus (DM) is a common chronic disease affecting humans globally. It is characterized by abnormally elevated blood glucose levels due to the failure of insulin production or reduction of insulin sensitivity and functionality. Insulin and glucagon-like peptide (GLP)-1 replenishment or improvement of insulin resistance are the two major strategies to treat diabetes. Recently, optogenetics that uses genetically encoded light-sensitive proteins to precisely control cell functions has been regarded as a novel therapeutic strategy for diabetes. Here, we summarize the latest development of optogenetics and its integration with synthetic biology approaches to produce light-responsive cells for insulin/GLP-1 production, amelioration of insulin resistance and neuromodulation of insulin secretion. In addition, we introduce the development of cell encapsulation and delivery methods and smart bioelectronic devices for the in vivo application of optogenetics-based cell therapy in diabetes. The remaining challenges for optogenetics-based cell therapy in the clinical translational study are also discussed.
3.

Using split protein reassembly strategy to optically control PLD enzymatic activity.

blue CRY2/CIB1 iLID HEK293T HeLa Signaling cascade control Organelle manipulation
bioRxiv, 30 Jan 2024 DOI: 10.1101/2024.01.27.577557 Link to full text
Abstract: Phospholipase D (PLD) and phosphatidic acid (PA) play a spatio-temporal role in regulating diverse cellular activities. Although current methodologies enable optical control of the subcellular localization of PLD and by which influence local PLD enzyme activity, the overexpression of PLD elevates the basal PLD enzyme activity and further leads to increased PA levels in cells. In this study, we employed a split protein reassembly strategy and optogenetic techniques to modify superPLD (a PLDPMF variant with a high basal activity). We splited this variants into two HKD domains and fused these domains with optogenetic elements and by which we achieved light-mediated dimerization of the two HKD proteins and then restored the PLD enzymatic activity.
4.

Optogenetic strategies for optimizing the performance of biosensors of membrane phospholipids in live cells.

blue cpLOV2 CRY2/CIB1 CRY2/CRY2 LOVTRAP HEK293T HeLa Organelle manipulation
bioRxiv, 4 Aug 2023 DOI: 10.1101/2023.08.03.551799 Link to full text
Abstract: High-performance biosensors are crucial for elucidating the spatiotemporal regulatory roles and dynamics of membrane lipids, but there is a lack of improvement strategies for biosensors with low sensitivity and low-content substrates detection. Here we developed universal optogenetic strategies to improve a set of membrane biosensors by trapping them into specific region and further reducing the background signal, or by optically-controlled phase separation for membrane lipids detection and tracking. These improved biosensors were superior to typical tools and light simulation would enhance their detection performance and resolution, which might contribute to the design and optimization of other biosensors.
5.

Applications of Upconversion Nanoparticles in Cellular Optogenetics.

blue cyan green Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Review
Acta Biomater, 27 Aug 2021 DOI: 10.1016/j.actbio.2021.08.035 Link to full text
Abstract: Upconversion-mediated optogenetics is an emerging powerful technique to remotely control and manipulate the deep-tissue protein functions and signaling pathway activation. This technique uses lanthanide upconversion nanoparticles (UCNPs) as light transducers and through near-infrared light to indirectly activate the traditional optogenetic proteins. With the merits of high spatiotemporal resolution and minimal invasiveness, this technique enables cell-type specific manipulation of cellular activities in deep tissues as well as in living animals. In this review, we introduce the latest development of optogenetic modules and UCNPs, with emphasis on the integration of UCNPs with cellular optogenetics and their biomedical applications on the control of neural/brain activity, cancer therapy and cardiac optogenetics in vivo. Furthermore, we analyze the current developed strategies to optimize and advance the upconversion-mediated optogenetics and discuss the remaining challenges of its further applications in biomedical study and clinical translational research. STATEMENT OF SIGNIFICANCE: Optogenetics harnesses photoactivatable proteins to optically stimulate and control intracellular activities. UCNPs-mediated NIR-activatable optogenetics uses lanthanide upconversion nanoparticles (UCNPs) as light transducers and utilizes near-infrared (NIR) light to indirectly activate the traditional optogenetic proteins. The integration of UCNPs with cellular optogenetics has showed great promise in biomedical applications in regulating neural/brain activity, cancer therapy and cardiac optogenetics in vivo. The evolution and optimization of functional UCNPs and the discovery and engineering of novel optogenetic modules would both contribute to the advance of such unique hybrid technology, which may lead to discoveries in biomedical research and provide new treatments for human diseases.
Submit a new publication to our database