1.
Photo-tunable hydrogels reveal cellular sensing of rapid rigidity changes through the accumulation of mechanical signaling molecules.
-
Yang, J
-
Wang, P
-
Zhang, Y
-
Zhang, M
-
Sun, Q
-
Chen, H
-
Dong, L
-
Chu, Z
-
Xue, B
-
Hoff, WD
-
Zhao, C
-
Wang, W
-
Wei, Q
-
Cao, Y
Abstract:
Cells use traction forces to sense mechanical cues in their environment. While the molecular clutch model effectively explains how cells exert more forces on stiffer substrates, it falls short in addressing their adaptation to dynamic mechanical fluctuations prevalent in tissues and organs. Here, using hydrogel with photo-responsive rigidity, we show that cells' response to rigidity changes is frequency dependent. Strikingly, at certain frequencies, cellular traction forces exceed those on static substrates 4-fold stiffer, challenging the established molecular clutch model. We discover that the discrepancy between the rapid adaptation of traction forces and the slower deactivation of mechanotransduction signaling proteins results in their accumulation, thereby enhancing long-term cellular traction in dynamic settings. Consequently, we propose a new model that melds immediate mechanosensing with extended mechanical signaling. Our study underscores the significance of dynamic rigidity in the development of synthetic biomaterials, emphasizing the importance of considering both immediate and prolonged cellular responses.
2.
PPARγ phase separates with RXRα at PPREs to regulate target gene expression.
-
Li, Z
-
Luo, L
-
Yu, W
-
Li, P
-
Ou, D
-
Liu, J
-
Ma, H
-
Sun, Q
-
Liang, A
-
Huang, C
-
Chi, T
-
Huang, X
-
Zhang, Y
Abstract:
Peroxisome proliferator-activated receptor (PPAR)-γ is a key transcription activator controlling adipogenesis and lipid metabolism. PPARγ binds PPAR response elements (PPREs) as the obligate heterodimer with retinoid X receptor (RXR) α, but exactly how PPARγ orchestrates the transcriptional response is unknown. This study demonstrates that PPARγ forms phase-separated droplets in vitro and solid-like nuclear condensates in cell, which is intriguingly mediated by its DNA binding domain characterized by the zinc finger motif. Furthermore, PPARγ forms nuclear condensates at PPREs sites through phase separation to compartmentalize its heterodimer partner RXRα to initiate PPARγ-specific transcriptional activation. Finally, using an optogenetic approach, the enforced formation of PPARγ/RXRα condensates leads to preferential enrichment at PPREs sites and significantly promotes the expression of PPARγ target genes. These results define a novel mechanism by which PPARγ engages the phase separation principles for efficient and specific transcriptional activation.