Optogenetic control of Corynebacterium glutamicum gene expression.
blue
near-infrared
BphP1/Q-PAS1
EL222
iLID
NcWC1-LOV
VfAU1-LOV
VVD
C. glutamicum
in silico
Transgene expression
Abstract:
Corynebacterium glutamicum is a key industrial workhorse for producing amino acids and high-value chemicals. Balancing metabolic flow between cell growth and product synthesis is crucial for enhancing production efficiency. Developing dynamic, broadly applicable, and minimally toxic gene regulation tools for C. glutamicum remains challenging, as optogenetic tools ideal for dynamic regulatory strategies have not yet been developed. This study introduces an advanced light-controlled gene expression system using light-controlled RNA-binding proteins (RBP), a first for Corynebacterium glutamicum. We established a gene expression regulation system, 'LightOnC.glu', utilizing the light-controlled RBP to construct light-controlled transcription factors in C. glutamicum. Simultaneously, we developed a high-performance light-controlled gene interference system using CRISPR/Cpf1 tools. The metabolic flow in the synthesis network was designed to enable the production of chitin oligosaccharides (CHOSs) and chondroitin sulphate oligosaccharides A (CSA) for the first time in C. glutamicum. Additionally, a light-controlled bioreactor was constructed, achieving a CHOSs production concentration of 6.2 g/L, the highest titer recorded for CHOSs biosynthesis to date. Herein, we have established a programmable light-responsive genetic circuit in C. glutamicum, advancing the theory of dynamic regulation based on light signaling. This breakthrough has potential applications in optimizing metabolic modules in other chassis cells and synthesizing other compounds.