Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: author:"Xin Zhao"
Showing 1 - 2 of 2 results
1.

FLASH-AWAY: Intrabody-Directed Targeting of Optogenetic Tools for Protein Degradation.

blue CRY2/CRY2 CRY2clust CRY2high CRY2olig HeLa Signaling cascade control
ACS Synth Biol, 23 Nov 2025 DOI: 10.1021/acssynbio.4c00822 Link to full text
Abstract: Protein homeostasis, or proteostasis, is essential for cellular proteins to function properly. The buildup of abnormal proteins (such as damaged, misfolded, or aggregated proteins) is associated with many diseases, including cancer. Therefore, maintaining proteostasis is critical for cellular health. Currently, genetic methods for modulating proteostasis, such as RNA interference and CRISPR knockout, lack spatial and temporal precision. They are also not suitable for depleting already-synthesized proteins. Similarly, molecular tools like PROTACs and molecular glue face challenges in drug design and discovery. To directly control targeted protein degradation within cells, we introduce an intrabody-based optogenetic toolbox named Flash-Away. Flash-Away integrates the light-responsive ubiquitination activity of the RING domain of TRIM21 for protein degradation, coupled with specific intrabodies for precise targeting. Upon exposure to blue light, Flash-Away enables rapid and targeted degradation of selected proteins. This versatility is demonstrated through successful application to diverse protein targets, including actin, MLKL, and ALFA-tag fused proteins. This innovative light-inducible protein degradation system offers a powerful approach to investigate the functions of specific proteins within physiological contexts. Moreover, Flash-Away presents potential opportunities for clinical translational research and precise medical interventions, advancing the prospects of precision medicine.
2.

Optogenetic engineered umbilical cord MSC-derived exosomes for remodeling of the immune microenvironment in diabetic wounds and the promotion of tissue repair.

blue CRY2/CIB1 hMSCs Control of intracellular / vesicular transport
J Nanobiotechnology, 2 Jun 2023 DOI: 10.1186/s12951-023-01886-3 Link to full text
Abstract: Angiogenesis and tissue repair in chronic non-healing diabetic wounds remain critical clinical problems. Engineered MSC-derived exosomes have significant potential for the promotion of wound healing. Here, we discuss the effects and mechanisms of eNOS-rich umbilical cord MSC exosomes (UCMSC-exo/eNOS) modified by genetic engineering and optogenetic techniques on diabetic chronic wound repair.
Submit a new publication to our database