Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Optogenetic control of mitochondrial aggregation and function.

blue CRY2/CIB1 CRY2clust Cos-7 Organelle manipulation
Front Bioeng Biotechnol, 6 Jan 2025 DOI: 10.3389/fbioe.2024.1500343 Link to full text
Abstract: The balance of mitochondrial fission and fusion plays an important role in maintaining the stability of cellular homeostasis. Abnormal mitochondrial fission and fragmentation have been shown to be associated with oxidative stress, which causes a variety of human diseases from neurodegeneration disease to cancer. Therefore, the induction of mitochondrial aggregation and fusion may provide an alternative approach to alleviate these conditions. Here, an optogenetic-based mitochondrial aggregation system (Opto-MitoA) developed, which is based on the CRY2clust/CIBN light-sensitive module. Upon blue light illumination, CRY2clust relocates from the cytosol to mitochondria where it induces mitochondrial aggregation by CRY2clust homo-oligomerization and CRY2clust-CIBN hetero-dimerization. Our functional experiments demonstrate that Opto-MitoA-induced mitochondrial aggregation potently alleviates niclosamide-caused cell dysfunction in ATP production. This study establishes a novel optogenetic-based strategy to regulate mitochondrial dynamics in cells, which may provide a potential therapy for treating mitochondrial-related diseases.
2.

Dual Function of PI(4,5)P2 in Insulin-Regulated Exocytic Trafficking of GLUT4 in Adipocytes.

blue CRY2/CIB1 3T3-L1 Signaling cascade control Control of intracellular / vesicular transport
J Mol Biol, 25 Jun 2020 DOI: 10.1016/j.jmb.2020.06.019 Link to full text
Abstract: Phosphoinositides are important signaling molecules involved in the regulation of vesicular trafficking. It has been implicated that phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2] is involved in insulin-regulated GLUT4 translocation in adipocytes. However, it remains unclear where and how PI(4,5)P2 regulates discrete steps of GLUT4 vesicle translocation in adipocytes, especially on the exocytic arm of regulation. Here, we employed optogenetic tools to acutely control the PI(4,5)P2 metabolism in living cells. By combination of TIRFM imaging, we were able to monitor the temporal-spatial-dependent PI(4,5)P2 regulation on discrete steps of GLUT4 translocation in adipocytes. We found that the plasma membrane localized PI(4,5)P2 is crucial for proper insulin signaling propagation and for insulin-stimulated GLUT4 vesicle translocation in 3T3-L1 adipocytes. Global depletion of PI(4,5)P2 on the cell surface blunted insulin-stimulated Akt phosphorylation and abolished insulin effects in promotion of the docking and fusion of GLUT4 vesicle with the plasma membrane. Furthermore, by development of a novel optogenetic module to selectively modulate PI(4,5)P2 levels on the GLUT4 vesicle docking site, we identified an important regulatory role of PI(4,5)P2 in controlling of vesicle docking process. Local depletion of PI(4,5)P2 at the vesicle docking site promoted GLUT4 vesicle undocking, diminished insulin-stimulated GLUT4 vesicle docking and fusion, but without perturbation of insulin signaling propagation in adipocytes. Our results provide strong evidence that cell surface PI(4,5)P2 plays two distinct functions on regulation of the exocytic trafficking of GLUT4 in adipocytes. PI(4,5)P2 not only regulates the proper activation of insulin signaling in general but also controls GLUT4 vesicle docking process at the vesicle-membrane contact sites.
Submit a new publication to our database