Showing 1 - 3 of 3 results
1.
Comparative analysis of two paradigm bacteriophytochromes reveals opposite functionalities in two-component signaling.
-
Multamäki, E
-
Nanekar, R
-
Morozov, D
-
Lievonen, T
-
Golonka, D
-
Wahlgren, WY
-
Stucki-Buchli, B
-
Rossi, J
-
Hytönen, VP
-
Westenhoff, S
-
Ihalainen, JA
-
Möglich, A
-
Takala, H
Abstract:
Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (Agp1). Whereas Agp1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While Agp1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes suggest the use of light-controllable histidine kinases and phosphatases for optogenetics.
2.
Illuminating a Phytochrome Paradigm- a Light-Activated Phosphatase in Two-Component Signaling Uncovered.
-
Multamäki, E
-
Nanekar, R
-
Morozov, D
-
Lievonen, T
-
Golonka, D
-
Wahlgren, WY
-
Stucki-Buchli, B
-
Rossi, J
-
Hytönen, VP
-
Westenhoff, S
-
Ihalainen, JA
-
Möglich, A
-
Takala, HA
Abstract:
Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (AgP1). Whereas AgP1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While AgP1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes inform the use of light-controllable histidine kinases and phosphatases for optogenetics.
3.
Connection between absorption properties and conformational changes in Deinococcus radiodurans phytochrome.
Abstract:
Phytochromes consist of several protein domains and a linear tetrapyrrole molecule, which interact as a red-light-sensing system. In this study, size-exclusion chromatography and light-scattering techniques are combined with UV-vis spectroscopy to investigate light-induced changes in dimeric Deinococcus radiodurans bacterial phytochrome (DrBphP) and its subdomains. The photosensory unit (DrCBD-PHY) shows an unusually stable Pfr state with minimal dark reversion, whereas the histidine kinase (HK) domain facilitates dark reversion to the resting state. Size-exclusion chromatography reveals that all phytochrome fragments remain as dimers in the illuminated state and dark state. Still, the elution profiles of all phytochrome fragments differ between the illuminated and dark states. The differences are observed reliably only when the whole UV-vis spectrum is characterized along the elution profile and show more Pfr-state characteristics at later elution volumes in DrBphP and DrCBD-PHY fragments. This implies that the PHY domain has an important role in amplifying and relaying light-induced conformational changes to the HK domain. In the illuminated state, the HK domain appears partially unfolded and prone to form oligomers. The oligomerization of DrBphP can be diminished by converting the molecule back to the resting Pr state by using far-red light.