Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 1 of 1 results
1.

Mechanical worrying drives cell migration in crowded environments.

blue AsLOV2 CRY2/CIB1 MV3 Control of cytoskeleton / cell motility / cell shape
bioRxiv, 12 Aug 2021 DOI: 10.1101/2020.11.09.372912 Link to full text
Abstract: Migratory cells navigate through crowded 3D microenvironments in vivo. Amoeboid cells, such as immune cells and some cancer cells, are thought to do so by deforming their bodies to squeeze through tight spaces.1 Yet large populations of nearly spherical amoeboid cells migrate2–4 in microenvironments too dense5,6 to move through without extensive shape deformations. How they do so is unknown. We used high-resolution light-sheet microscopy to visualize metastatic melanoma cells in dense environments, finding that cells maintain a round morphology as they migrate and create a path through which to move via bleb-driven mechanical degradation and subsequent macropinocytosis of extracellular matrix components. Proteolytic degradation of the extracellular matrix via matrix metalloproteinases is not required. Membrane blebs are short-lived relative to the timescale of migration, and thus persistence in their polarization is critical for productive ablation of the extracellular matrix. Interactions between small but long-lived cortical adhesions and collagen at the cell front induce PI-3 Kinase signaling that drive bleb enlargement via branched actin polymerization. Large blebs in turn abrade collagen, creating a feedback between extracellular matrix structure, cell morphology, and cell polarization that results in both path generation and persistent cell movement.
Submit a new publication to our database