Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 4 of 4 results
1.

Plant Phytochrome Interactions Decode Light and Temperature Signals.

red Phytochromes A. thaliana leaf protoplasts CHO-K1 in vitro Background
Plant Cell, 11 Sep 2024 DOI: 10.1093/plcell/koae249 Link to full text
Abstract: Plant phytochromes perceive red and far-red light to elicit adaptations to the changing environment. Downstream physiological responses revolve around red-light-induced interactions with phytochrome-interacting factors (PIF). Phytochromes double as thermoreceptors, owing to the pronounced temperature dependence of thermal reversion from the light-adapted Pfr to the dark-adapted Pr state. Here, we assess whether thermoreception may extend to the phytochrome:PIF interactions. While the association between Arabidopsis (Arabidopsis thaliana) PHYTOCHROME B (PhyB) and several PHYTOCHROME-INTERACTING FACTOR (PIF) variants moderately accelerates with temperature, the dissociation does more so, thus causing net destabilization of the phytochrome:PIF complex. Markedly different temperature profiles of PIF3 and PIF6 might underlie stratified temperature responses in plants. Accidentally, we identify a photoreception mechanism under strong continuous light, where the extent of phytochrome:PIF complexation decreases with red-light intensity rather than increases. Mathematical modeling rationalizes this attenuation mechanism and ties it to rapid red-light-driven Pr⇄Pfr interconversion and complex dissociation out of Pr. Varying phytochrome abundance, e.g., during diurnal and developmental cycles, and interaction dynamics, e.g., across different PIFs, modify the nature and extent of attenuation, thus permitting light-response profiles more malleable than possible for the phytochrome Pr⇄Pfr interconversion alone. Our data and analyses reveal a photoreception mechanism with implications for plant physiology, optogenetics, and biotechnological applications.
2.

Light-Dependent Control of Bacterial Expression at the mRNA Level.

blue PAL YtvA E. coli Transgene expression
ACS Synth Biol, 21 Sep 2022 DOI: 10.1021/acssynbio.2c00365 Link to full text
Abstract: Sensory photoreceptors mediate numerous light-dependent adaptations across organisms. In optogenetics, photoreceptors achieve the reversible, non-invasive, and spatiotemporally precise control by light of gene expression and other cellular processes. The light-oxygen-voltage receptor PAL binds to small RNA aptamers with sequence specificity upon blue-light illumination. By embedding the responsive aptamer in the ribosome-binding sequence of genes of interest, their expression can be downregulated by light. We developed the pCrepusculo and pAurora optogenetic systems that are based on PAL and allow to down- and upregulate, respectively, bacterial gene expression using blue light. Both systems are realized as compact, single plasmids that exhibit stringent blue-light responses with low basal activity and up to several 10-fold dynamic range. As PAL exerts light-dependent control at the RNA level, it can be combined with other optogenetic circuits that control transcription initiation. By integrating regulatory mechanisms operating at the DNA and mRNA levels, optogenetic circuits with emergent properties can thus be devised. As a case in point, the pEnumbra setup permits to upregulate gene expression under moderate blue light whereas strong blue light shuts off expression again. Beyond providing novel signal-responsive expression systems for diverse applications in biotechnology and synthetic biology, our work also illustrates how the light-dependent PAL-aptamer interaction can be harnessed for the control and interrogation of RNA-based processes.
3.

Optogenetic Control of Bacterial Expression by Red Light.

blue red DrBphP PAL E. coli Transgene expression
ACS Synth Biol, 23 Aug 2022 DOI: 10.1021/acssynbio.2c00259 Link to full text
Abstract: In optogenetics, as in nature, sensory photoreceptors serve to control cellular processes by light. Bacteriophytochrome (BphP) photoreceptors sense red and far-red light via a biliverdin chromophore and, in response, cycle between the spectroscopically, structurally, and functionally distinct Pr and Pfr states. BphPs commonly belong to two-component systems that control the phosphorylation of cognate response regulators and downstream gene expression through histidine kinase modules. We recently demonstrated that the paradigm BphP from Deinococcus radiodurans exclusively acts as a phosphatase but that its photosensory module can control the histidine kinase activity of homologous receptors. Here, we apply this insight to reprogram two widely used setups for bacterial gene expression from blue-light to red-light control. The resultant pREDusk and pREDawn systems allow gene expression to be regulated down and up, respectively, uniformly under red light by 100-fold or more. Both setups are realized as portable, single plasmids that encode all necessary components including the biliverdin-producing machinery. The triggering by red light affords high spatial resolution down to the single-cell level. As pREDusk and pREDawn respond sensitively to red light, they support multiplexing with optogenetic systems sensitive to other light colors. Owing to the superior tissue penetration of red light, the pREDawn system can be triggered at therapeutically safe light intensities through material layers, replicating the optical properties of the skin and skull. Given these advantages, pREDusk and pREDawn enable red-light-regulated expression for diverse use cases in bacteria.
4.

The Association Kinetics Encode the Light Dependence of Arabidopsis Phytochrome B Interactions.

red Phytochromes Background
J Mol Biol, 10 Jun 2020 DOI: 10.1016/j.jmb.2020.06.001 Link to full text
Abstract: Plant phytochromes enable vital adaptations to red and far-red light. At the molecular level, these responses are mediated by light-regulated interactions between phytochromes and partner proteins, foremost the phytochrome-interacting factors (PIF). Although known for decades, quantitative analyses of these interactions have long been sparse. To address this deficit, we here studied by an integrated fluorescence-spectroscopic approach the equilibrium and kinetics of Arabidopsis thaliana phytochrome B (AtPhyB) binding to a tetramerized PIF6 variant. Several readouts consistently showed the stringently light-regulated interaction to be little affected by PIF tetramerization. Analysis of the binding kinetics allowed the determination of bimolecular association and unimolecular dissociation rate constants as a function of light. Unexpectedly, the stronger affinity of AtPhyB under red light relative to far-red light is entirely due to accelerated association rather than decelerated dissociation. The association reaction under red light is highly efficient and only threefold slower than the diffusion limit. The present findings pertain equally to the analysis of signal transduction in plants and to the biotechnological application of phytochromes.
Submit a new publication to our database