Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Catalytic-dependent and independent functions of the histone acetyltransferase CBP promote pioneer factor-mediated zygotic genome activation.

blue CRY2/CRY2 Schneider 2 Epigenetic modification Endogenous gene expression Developmental processes
bioRxiv, 5 Oct 2024 DOI: 10.1101/2024.10.04.616638 Link to full text
Abstract: Immediately after fertilization the genome is transcriptionally quiescent. Maternally encoded pioneer transcription factors reprogram the chromatin state and facilitate the transcription of the zygotic genome. In Drosophila, transcription is initiated by the pioneer factor Zelda. While Zelda-occupied sites are enriched with histone acetylation, a post-translational mark associated with active cis-regulatory regions, the functional relationship between Zelda and histone acetylation in zygotic genome activation remained unclear. We show that Zelda-mediated recruitment of the histone acetyltransferase CBP is essential for zygotic transcription. CBP catalytic activity is necessary for release of RNA Polymerase II (Pol II) into transcription elongation and for embryonic development. However, CBP also activates zygotic transcription independent of acetylation through Pol II recruitment. Neither acetylation nor CBP are required for the pioneering function of Zelda. Our data suggest that pioneer factor-mediated recruitment of CBP is a conserved mechanism required to activate zygotic transcription but that this role is separable from the function of pioneer factors in restructuring chromatin accessibility.
2.

Continued Activity of the Pioneer Factor Zelda Is Required to Drive Zygotic Genome Activation.

blue CRY2/CRY2 D. melanogaster in vivo Endogenous gene expression
Mol Cell, 9 Feb 2019 DOI: 10.1016/j.molcel.2019.01.014 Link to full text
Abstract: Reprogramming cell fate during the first stages of embryogenesis requires that transcriptional activators gain access to the genome and remodel the zygotic transcriptome. Nonetheless, it is not clear whether the continued activity of these pioneering factors is required throughout zygotic genome activation or whether they are only required early to establish cis-regulatory regions. To address this question, we developed an optogenetic strategy to rapidly and reversibly inactivate the master regulator of genome activation in Drosophila, Zelda. Using this strategy, we demonstrate that continued Zelda activity is required throughout genome activation. We show that Zelda binds DNA in the context of nucleosomes and suggest that this allows Zelda to occupy the genome despite the rapid division cycles in the early embryo. These data identify a powerful strategy to inactivate transcription factor function during development and suggest that reprogramming in the embryo may require specific, continuous pioneering functions to activate the genome.
Submit a new publication to our database