Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Development of an optogenetics tool, Opto-RANK, for control of osteoclast differentiation using blue light.

blue CRY2/CIB1 CRY2clust HEK293T RAW264.7 Signaling cascade control
Sci Rep, 19 Jan 2024 DOI: 10.1038/s41598-024-52056-w Link to full text
Abstract: Optogenetics enables precise regulation of intracellular signaling in target cells. However, the application of optogenetics to induce the differentiation of precursor cells and generate mature cells with specific functions has not yet been fully explored. Here, we focused on osteoclasts, which play an important role in bone remodeling, to develop a novel optogenetics tool, Opto-RANK, which can manipulate intracellular signals involved in osteoclast differentiation and maturation using blue light. We engineered Opto-RANK variants, Opto-RANKc and Opto-RANKm, and generated stable cell lines through retroviral transduction. Differentiation was induced by blue light, and various assays were conducted for functional analysis. Osteoclast precursor cells expressing Opto-RANK differentiated into multinucleated giant cells on light exposure and displayed upregulation of genes normally induced in differentiated osteoclasts. Furthermore, the differentiated cells exhibited bone-resorbing activities, with the possibility of spatial control of the resorption by targeted light illumination. These results suggested that Opto-RANK cells differentiated by light possess the features of osteoclasts, both morphological and functional. Thus, Opto-RANK should be useful for detailed spatiotemporal analysis of intracellular signaling during osteoclast differentiation and the development of new therapies for various bone diseases.
2.

Optogenetic manipulation of intracellular calcium by BACCS promotes differentiation of MC3T3-E1 cells.

blue AsLOV2 MC3T3-E1 Cell differentiation Immediate control of second messengers
Biochem Biophys Res Commun, 27 Oct 2018 DOI: 10.1016/j.bbrc.2018.10.107 Link to full text
Abstract: Bone remodeling is maintained through the balance between bone formation by osteoblasts and bone resorption by osteoclasts. Previous studies suggested that intracellular Ca2+ signaling plays an important role in the differentiation of osteoblasts; however, the molecular mechanism of Ca2+ signaling in the differentiation of osteoblasts remains unclear. To elucidate the effect of Ca2+ signaling in osteoblasts, we employed an optogenetic tool, blue light-activated Ca2+ channel switch (BACCS). BACCS was used to spatiotemporally control intracellular Ca2+ with blue light stimulation. MC3T3-E1 cells, which have been used as a model of differentiation from preosteoblast to osteoblast, were promoted to differentiate by BACCS expression and rhythmical blue light stimulation. The results indicated that intracellular Ca2+ change from the outside of the cells can regulate signaling for differentiation of MC3T3-E1 cells. Our findings provide evidence that Ca2+ could cause osteoblast differentiation.
Submit a new publication to our database