Showing 1 - 4 of 4 results
1.
Light-Regulated Pro-Angiogenic Engineered Living Materials.
Abstract:
Regenerative medicine aims to restore damaged cells, tissues, and organs, for which growth factors are vital to stimulate regenerative cellular transformations. Major advances have been made in growth factor engineering and delivery like the development of robust peptidomimetics and controlled release matrices. However, their clinical applicability remains limited due to their poor stability in the body and need for careful regulation of their local concentration to avoid unwanted side-effects. In this study, a strategy to overcome these limitations is explored using engineered living materials (ELMs), which contain live microorganisms that can be programmed with stimuli-responsive functionalities. Specifically, the development of an ELM that releases a pro-angiogenic protein in a light-regulated manner is described. This is achieved by optogenetically engineering bacteria to synthesize and secrete a vascular endothelial growth factor peptidomimetic (QK) linked to a collagen-binding domain. The bacteria are securely encapsulated in bilayer hydrogel constructs that support bacterial functionality but prevent their escape from the ELM. In situ control over the release profiles of the pro-angiogenic protein using light is demonstrated. Finally, it is shown that the released protein is able to bind collagen and promote angiogenic network formation among vascular endothelial cells, indicating the regenerative potential of these ELMs.
2.
Regulating Bacterial Behavior within Hydrogels of Tunable Viscoelasticity.
Abstract:
Engineered living materials (ELMs) are a new class of materials in which living organism incorporated into diffusive matrices uptake a fundamental role in material's composition and function. Understanding how the spatial confinement in 3D can regulate the behavior of the embedded cells is crucial to design and predict ELM's function, minimize their environmental impact and facilitate their translation into applied materials. This study investigates the growth and metabolic activity of bacteria within an associative hydrogel network (Pluronic-based) with mechanical properties that can be tuned by introducing a variable degree of acrylate crosslinks. Individual bacteria distributed in the hydrogel matrix at low density form functional colonies whose size is controlled by the extent of permanent crosslinks. With increasing stiffness and elastic response to deformation of the matrix, a decrease in colony volumes and an increase in their sphericity are observed. Protein production follows a different pattern with higher production yields occurring in networks with intermediate permanent crosslinking degrees. These results demonstrate that matrix design can be used to control and regulate the composition and function of ELMs containing microorganisms. Interestingly, design parameters for matrices to regulate bacteria behavior show similarities to those elucidated for 3D culture of mammalian cells.
3.
Optoregulated Drug Release from an Engineered Living Material: Self-Replenishing Drug Depots for Long-Term, Light-Regulated Delivery.
Abstract:
On-demand and long-term delivery of drugs are common requirements in many therapeutic applications, not easy to be solved with available smart polymers for drug encapsulation. This work presents a fundamentally different concept to address such scenarios using a self-replenishing and optogenetically controlled living material. It consists of a hydrogel containing an active endotoxin-free Escherichia coli strain. The bacteria are metabolically and optogenetically engineered to secrete the antimicrobial and antitumoral drug deoxyviolacein in a light-regulated manner. The permeable hydrogel matrix sustains a viable and functional bacterial population and permits diffusion and delivery of the synthesized drug to the surrounding medium at quantities regulated by light dose. Using a focused light beam, the site for synthesis and delivery of the drug can be freely defined. The living material is shown to maintain considerable levels of drug production and release for at least 42 days. These results prove the potential and flexibility that living materials containing engineered bacteria can offer for advanced therapeutic applications.
4.
Optoregulated Protein Release from an Engineered Living Material.
Abstract:
Developing materials to encapsulate and deliver functional proteins inside the body is a challenging yet rewarding task for therapeutic purposes. High production costs, mostly associated with the purification process, short-term stability in vivo, and controlled and prolonged release are major hurdles for the clinical application of protein-based biopharmaceuticals. In an attempt to overcome these hurdles, herein, the possibility of incorporating bacteria as protein factories into a material and externally controlling protein release using optogenetics is demonstrated. By engineering bacteria to express and secrete a red fluorescent protein in response to low doses of blue light irradiation and embedding them in agarose hydrogels, living materials are fabricated capable of releasing proteins into the surrounding medium when exposed to light. These bacterial hydrogels allow spatially confined protein expression and dosed protein release over several weeks, regulated by the area and extent of light exposure. The possibility of incorporating such complex functions in a material using relatively simple material and genetic engineering strategies highlights the immense potential and versatility offered by living materials for protein-based biopharmaceutical delivery.