Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Asymmetric Contraction of Adherens Junctions arises through RhoA and E-cadherin feedback.

blue TULIP Caco-2 Control of cell-cell / cell-material interactions
bioRxiv, 26 Feb 2021 DOI: 10.1101/2021.02.26.433093 Link to full text
Abstract: Tissue morphogenesis often arises from the culmination of discrete changes in cell-cell junction behaviors, namely ratcheted junction contractions that lead to collective cellular rearrangements. Mechanochemical signaling in the form of RhoA underlies these ratcheted contractions, which occur asymmetrically as one highly motile vertex contracts toward a relatively less motile tricellular vertex. The underlying mechanisms driving asymmetric vertex movement remains unknown. Here, we use optogenetically controlled RhoA in model epithelia together with biophysical modeling to uncover the mechanism lending to asymmetric vertex motion. We find that both local and global RhoA activation leads to increases in junctional tension, thereby facilitating vertex motion. RhoA activation occurs in discrete regions along the junction and is skewed towards the less-motile vertex. At these less-motile vertices, E-cadherin acts as an opposing factor to limit vertex motion through increased frictional drag. Surprisingly, we uncover a feedback loop between RhoA and E-cadherin, as regional optogenetic activation of specified junctional zones pools E-cadherin to the location of RhoA activation. Incorporating this circuit into a mathematical model, we find that a positive feedback between RhoA-mediated tension and E-cadherin-induced frictional drag on tricellular vertices recapitulates experimental data. As such, the location of RhoA determines which vertex is under high tension, pooling E-cadherin and increasing the frictional load at the tricellular vertex to limit its motion. This feedback drives a tension-dependent intercellular “clutch” at tricellular vertices which stabilizes vertex motion upon tensional load.
2.

Mechanosensitive junction remodelling promotes robust epithelial morphogenesis.

blue TULIP Caco-2 Control of cytoskeleton / cell motility / cell shape
Lancet Diabetes Endocrinol, 28 Sep 2019 DOI: 10.1016/j.bpj.2019.09.027 Link to full text
Abstract: Morphogenesis of epithelial tissues requires tight spatiotemporal coordination of cell shape changes. In vivo, many tissue-scale shape changes are driven by pulsatile contractions of intercellular junctions, which are rectified to produce irreversible deformations. The functional role of this pulsatory ratchet and its mechanistic basis remain unknown. Here we combine theory and biophysical experiments to show that mechanosensitive tension remodelling of epithelial cell junctions promotes robust epithelial shape changes via ratcheting. Using optogenetic control of actomyosin contractility, we find that epithelial junctions show elastic behaviour under low contractile stress, returning to their original lengths after contraction, but undergo irreversible deformation under higher magnitudes of contractile stress. Existing vertex-based models for the epithelium are unable to capture these results, with cell junctions displaying purely elastic or fluid-like behaviours, depending on the choice of model parameters. To describe the experimental results, we propose a modified vertex model with two essential ingredients for junction mechanics: thresholded tension remodelling and continuous strain relaxation. First, a critical strain threshold for tension remodelling triggers irreversible junction length changes for sufficiently strong contractions, making the system robust to small fluctuations in contractile activity. Second, continuous strain relaxation allows for mechanical memory removal, enabling frequency-dependent modulation of cell shape changes via mechanical ratcheting. Taken together, the combination of mechanosensitive tension remodelling and junctional strain relaxation provides a robust mechanism for large-scale morphogenesis.
Submit a new publication to our database