Showing 1 - 4 of 4 results
1.
ActuAtor, a Listeria-inspired molecular tool for physical manipulation of intracellular organizations through de novo actin polymerization.
-
Nakamura, H
-
Rho, E
-
Lee, CT
-
Itoh, K
-
Deng, D
-
Watanabe, S
-
Razavi, S
-
Matsubayashi, HT
-
Zhu, C
-
Jung, E
-
Rangamani, P
-
Watanabe, S
-
Inoue, T
Abstract:
Form and function are often interdependent throughout biology. Inside cells, mitochondria have particularly attracted attention since both their morphology and functionality are altered under pathophysiological conditions. However, directly assessing their causal relationship has been beyond reach due to the limitations of manipulating mitochondrial morphology in a physiologically relevant manner. By engineering a bacterial actin regulator, ActA, we developed tools termed "ActuAtor" that inducibly trigger actin polymerization at arbitrary subcellular locations. The ActuAtor-mediated actin polymerization drives striking deformation and/or movement of target organelles, including mitochondria, Golgi apparatus, and nucleus. Notably, ActuAtor operation also disperses non-membrane-bound entities such as stress granules. We then implemented ActuAtor in functional assays, uncovering the physically fragmented mitochondria being slightly more susceptible to degradation, while none of the organelle functions tested are morphology dependent. The modular and genetically encoded features of ActuAtor should enable its application in studies of the form-function interplay in various intracellular contexts.
2.
Rapid and reversible optogenetic silencing of synaptic transmission by clustering of synaptic vesicles.
-
Vettkötter, D
-
Schneider, M
-
Goulden, BD
-
Dill, H
-
Liewald, J
-
Zeiler, S
-
Guldan, J
-
Ateş, YA
-
Watanabe, S
-
Gottschalk, A
Abstract:
Acutely silencing specific neurons informs about their functional roles in circuits and behavior. Existing optogenetic silencers include ion pumps, channels, metabotropic receptors, and tools that damage the neurotransmitter release machinery. While the former hyperpolarize the cell, alter ionic gradients or cellular biochemistry, the latter allow only slow recovery, requiring de novo synthesis. Thus, tools combining fast activation and reversibility are needed. Here, we use light-evoked homo-oligomerization of cryptochrome CRY2 to silence synaptic transmission, by clustering synaptic vesicles (SVs). We benchmark this tool, optoSynC, in Caenorhabditis elegans, zebrafish, and murine hippocampal neurons. optoSynC clusters SVs, observable by electron microscopy. Locomotion silencing occurs with tauon ~7.2 s and recovers with tauoff ~6.5 min after light-off. optoSynC can inhibit exocytosis for several hours, at very low light intensities, does not affect ion currents, biochemistry or synaptic proteins, and may further allow manipulating different SV pools and the transfer of SVs between them.
3.
Defunctionalizing intracellular organelles such as mitochondria and peroxisomes with engineered phospholipase A/acyltransferases.
Abstract:
Organelles vitally achieve multifaceted functions to maintain cellular homeostasis. Genetic and pharmacological approaches to manipulate individual organelles are powerful in probing their physiological roles. However, many of them are either slow in action, limited to certain organelles, or rely on toxic agents. Here, we design a generalizable molecular tool utilizing phospholipase A/acyltransferases (PLAATs) for rapid defunctionalization of organelles via remodeling of the membrane phospholipids. In particular, we identify catalytically active PLAAT truncates with minimal unfavorable characteristics. Chemically-induced translocation of the optimized PLAAT to the mitochondria surface results in their rapid deformation in a phospholipase activity dependent manner, followed by loss of luminal proteins as well as dissipated membrane potential, thus invalidating the functionality. To demonstrate wide applicability, we then adapt the molecular tool in peroxisomes, and observe leakage of matrix-resident functional proteins. The technique is compatible with optogenetic control, viral delivery and operation in primary neuronal cultures. Due to such versatility, the PLAAT strategy should prove useful in studying organelle biology of diverse contexts.
4.
Intracellular production of hydrogels and synthetic RNA granules by multivalent molecular interactions.
-
Nakamura, H
-
Lee, AA
-
Afshar, AS
-
Watanabe, S
-
Rho, E
-
Razavi, S
-
Suarez, A
-
Lin, YC
-
Tanigawa, M
-
Huang, B
-
DeRose, R
-
Bobb, D
-
Hong, W
-
Gabelli, SB
-
Goutsias, J
-
Inoue, T
Abstract:
Some protein components of intracellular non-membrane-bound entities, such as RNA granules, are known to form hydrogels in vitro. The physico-chemical properties and functional role of these intracellular hydrogels are difficult to study, primarily due to technical challenges in probing these materials in situ. Here, we present iPOLYMER, a strategy for a rapid induction of protein-based hydrogels inside living cells that explores the chemically inducible dimerization paradigm. Biochemical and biophysical characterizations aided by computational modelling show that the polymer network formed in the cytosol resembles a physiological hydrogel-like entity that acts as a size-dependent molecular sieve. We functionalize these polymers with RNA-binding motifs that sequester polyadenine-containing nucleotides to synthetically mimic RNA granules. These results show that iPOLYMER can be used to synthetically reconstitute the nucleation of biologically functional entities, including RNA granules in intact cells.