Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 3 of 3 results
1.

HP1-enhanced chromatin compaction stabilizes a synthetic metabolic circuit in yeast.

blue EL222 S. cerevisiae Endogenous gene expression
bioRxiv, 6 Mar 2025 DOI: 10.1101/2025.03.04.641524 Link to full text
Abstract: Chromatin compaction defines genome topology, evolution, and function. The Saccharomycotina subphylum, including the fermenting yeast Saccharomyces cerevisiae have a decompacted genome, possibly because they lost two genes mediating a specific histone lysine methylation and histone binding protein heterochromatin protein 1 (HP1). This decompaction may result in the higher-than-expected mutation and meiotic recombination rates observed in this species. To test this hypothesis, we retro-engineered S. cerevisiae to compact the genome by expressing the HP1 homologue of Schizosaccharomyces pombe SpSwi6 and H3K9 methyltransferase SpClr4. The resulting strain had significantly more compact chromatin and reduced rates of mutation and meiotic recombination. The increased genomic stability significantly prolongs the optogenetic control of an engineered strain designed to grow only in blue light. This result demonstrates the potential of our approach to enhance the stability of strains for metabolic engineering and other synthetic biology applications, which are prone to lose activities due to genetic instability.
2.

Design and Characterization of Rapid Optogenetic Circuits for Dynamic Control in Yeast Metabolic Engineering.

blue EL222 S. cerevisiae Transgene expression Endogenous gene expression
ACS Synth Biol, 24 Nov 2020 DOI: 10.1021/acssynbio.0c00305 Link to full text
Abstract: The use of optogenetics in metabolic engineering for light-controlled microbial chemical production raises the prospect of utilizing control and optimization techniques routinely deployed in traditional chemical manufacturing. However, such mechanisms require well-characterized, customizable tools that respond fast enough to be used as real-time inputs during fermentations. Here, we present OptoINVRT7, a new rapid optogenetic inverter circuit to control gene expression in Saccharomyces cerevisiae. The circuit induces gene expression in only 0.6 h after switching cells from light to darkness, which is at least 6 times faster than previous OptoINVRT optogenetic circuits used for chemical production. In addition, we introduce an engineered inducible GAL1 promoter (PGAL1-S), which is stronger than any constitutive or inducible promoter commonly used in yeast. Combining OptoINVRT7 with PGAL1-S achieves strong and light-tunable levels of gene expression with as much as 132.9 ± 22.6-fold induction in darkness. The high performance of this new optogenetic circuit in controlling metabolic enzymes boosts production of lactic acid and isobutanol by more than 50% and 15%, respectively. The strength and controllability of OptoINVRT7 and PGAL1-S open the door to applying process control tools to engineered metabolisms to improve robustness and yields in microbial fermentations for chemical production.
3.

Optogenetics and biosensors set the stage for metabolic cybergenetics.

blue green near-infrared red UV violet BLUF domains Cryptochromes LOV domains PAL Phytochromes UV receptors Review
Curr Opin Biotechnol, 11 Sep 2020 DOI: 10.1016/j.copbio.2020.07.012 Link to full text
Abstract: Cybergenetic systems use computer interfaces to enable feed-back controls over biological processes in real time. The complex and dynamic nature of cellular metabolism makes cybergenetics attractive for controlling engineered metabolic pathways in microbial fermentations. Cybergenetics would not only create new avenues of research into cellular metabolism, it would also enable unprecedented strategies for pathway optimization and bioreactor operation and automation. Implementation of metabolic cybergenetics, however, will require new capabilities from actuators, biosensors, and control algorithms. The recent application of optogenetics in metabolic engineering, the expanding role of genetically encoded biosensors in strain development, and continued progress in control algorithms for biological processes suggest that this technology will become available in the not so distant future.
Submit a new publication to our database