Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Enhancing the performance of Magnets photosensors through directed evolution.

blue Magnets E. coli HEK293T Transgene expression
bioRxiv, 15 Nov 2022 DOI: 10.1101/2022.11.14.516313 Link to full text
Abstract: Photosensory protein domains are the basis of optogenetic protein engineering. These domains originate from natural sources where they fulfill specific functions ranging from the protection against photooxidative damage to circadian rhythms. When used in synthetic biology, the features of these photosensory domains can be specifically tailored towards the application of interest, enabling their full exploitation for optogenetic regulation in basic research and applied bioengineering. In this work, we develop and apply a simple, yet powerful, directed evolution and high-throughput screening strategy that allows us to alter the most fundamental property of the widely used nMag/pMag photodimerization system: its light sensitivity. We identify a set of mutations located within the photosensory domains, which either increase or decrease the light sensitivity at sub-saturating light intensities, while also improving the dark-to-light fold change in certain variants. For some of these variants, photosensitivity and expression levels could be changed independently, showing that the shape of the light-activity dose-response curve can be tuned and adjusted. We functionally characterize the variants in vivo in bacteria on the single-cell and the population levels. We further show that a subset of these variants can be transferred into the mOptoT7 for gene expression regulation in mammalian cells. We demonstrate increased gene expression levels for low light intensities, resulting in reduced potential phototoxicity in long-term experiments. Our findings expand the applicability of the widely used Magnets photosensors by enabling a tuning towards the needs of specific optogenetic regulation strategies. More generally, our approach will aid optogenetic approaches by making the adaptation of photosensor properties possible to better suit specific experimental or bioprocess needs.
2.

Implementation of a Novel Optogenetic Tool in Mammalian Cells Based on a Split T7 RNA Polymerase.

blue Magnets VVD HEK293T Transgene expression
ACS Synth Biol, 3 Aug 2022 DOI: 10.1021/acssynbio.2c00067 Link to full text
Abstract: Optogenetic tools are widely used to control gene expression dynamics both in prokaryotic and eukaryotic cells. These tools are used in a variety of biological applications from stem cell differentiation to metabolic engineering. Despite some tools already available in bacteria, no light-inducible system currently exists to control gene expression independently from mammalian transcriptional and/or translational machineries thus working orthogonally to endogenous regulatory mechanisms. Such a tool would be particularly important in synthetic biology, where orthogonality is advantageous to achieve robust activation of synthetic networks. Here we implement, characterize, and optimize a new optogenetic tool in mammalian cells based on a previously published system in bacteria called Opto-T7RNAPs. The tool is orthogonal to the cellular machinery for transcription and consists of a split T7 RNA polymerase coupled with the blue light-inducible magnets system (mammalian OptoT7-mOptoT7). In our study we exploited the T7 polymerase's viral origins to tune our system's expression level, reaching up to an almost 20-fold change activation over the dark control. mOptoT7 is used here to generate mRNA for protein expression, shRNA for protein inhibition, and Pepper aptamer for RNA visualization. Moreover, we show that mOptoT7 can mitigate the gene expression burden when compared to another optogenetic construct. These properties make mOptoT7 a powerful new tool to use when orthogonality and viral RNA species (that lack endogenous RNA modifications) are desired.
Submit a new publication to our database