Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Selective optogenetic inhibition of Gαq or Gαi signaling by minimal RGS domains disrupts circuit functionality and circuit formation.

blue CRY2/CIB1 C. elegans in vivo D. melanogaster in vivo HEK293 rat dorsal root ganglion NSCs Signaling cascade control Neuronal activity control
Proc Natl Acad Sci U S A, 27 Aug 2024 DOI: 10.1073/pnas.2411846121 Link to full text
Abstract: Optogenetic techniques provide genetically targeted, spatially and temporally precise approaches to correlate cellular activities and physiological outcomes. In the nervous system, G protein-coupled receptors (GPCRs) have essential neuromodulatory functions through binding extracellular ligands to induce intracellular signaling cascades. In this work, we develop and validate an optogenetic tool that disrupts Gαq signaling through membrane recruitment of a minimal regulator of G protein signaling (RGS) domain. This approach, Photo-induced Gα Modulator-Inhibition of Gαq (PiGM-Iq), exhibited potent and selective inhibition of Gαq signaling. Using PiGM-Iq we alter the behavior of Caenorhabditis elegans and Drosophila with outcomes consistent with GPCR-Gαq disruption. PiGM-Iq changes axon guidance in cultured dorsal root ganglia neurons in response to serotonin. PiGM-Iq activation leads to developmental deficits in zebrafish embryos and larvae resulting in altered neuronal wiring and behavior. Furthermore, by altering the minimal RGS domain, we show that this approach is amenable to Gαi signaling. Our unique and robust optogenetic Gα inhibiting approaches complement existing neurobiological tools and can be used to investigate the functional effects neuromodulators that signal through GPCR and trimeric G proteins.
2.

Optogenetic inhibition of Gα signalling alters and regulates circuit functionality and early circuit formation.

blue CRY2/CIB1 C. elegans in vivo D. melanogaster in vivo HEK293A rat dorsal root ganglion NSCs zebrafish in vivo Signaling cascade control Developmental processes
bioRxiv, 8 May 2023 DOI: 10.1101/2023.05.06.539674 Link to full text
Abstract: Optogenetic techniques provide genetically targeted, spatially and temporally precise approaches to correlate cellular activities and physiological outcomes. In the nervous system, G-protein-coupled receptors (GPCRs) have essential neuromodulatory functions through binding extracellular ligands to induce intracellular signaling cascades. In this work, we develop and validate a new optogenetic tool that disrupt Gαq signaling through membrane recruitment of a minimal Regulator of G-protein signaling (RGS) domain. This approach, Photo-induced Modulation of Gα protein – Inhibition of Gαq (PiGM-Iq), exhibited potent and selective inhibition of Gαq signaling. We alter the behavior of C. elegans and Drosophila with outcomes consistent with GPCR-Gαq disruption. PiGM-Iq also changes axon guidance in culture dorsal root ganglia neurons in response to serotonin. PiGM-Iq activation leads to developmental deficits in zebrafish embryos and larvae resulting in altered neuronal wiring and behavior. By altering the choice of minimal RGS domain, we also show that this approach is amenable to Gαi signaling.
Submit a new publication to our database