Cyanobacterial Phytochromes in Optogenetics.
Abstract:
Optogenetics initially used plant photoreceptors to monitor neural circuits, later it has expanded to include engineered plant photoreceptors. Recently photoreceptors from bacteria, algae and cyanobacteria have been used as an optogenetic tool. Bilin-based photoreceptors are common light-sensitive photoswitches in plants, algae, bacteria and cyanobacteria. Here we discuss the photoreceptors from cyanobacteria. Several new photoreceptors have been explored in cyanobacteria which are now proposed as cyanobacteriochrome. The domains in the cyanobacteriochrome, light-induced signaling transduction, photoconversion, are the most attractive features for the optogenetic system. The wider spectral feature of cyanobacteriochrome from UV to visible radiation makes it a light potential sensitive optogenetic tool. Besides, cyanobacterial phytochrome responses to yellow, orange and blue light have more application in optogenetics. This chapter summarizes the photoconversion, phototaxis, cell aggregation, cell signaling mediated by cyanobacteriochrome and cyanophytochrome. As there is a wide range of cyanobacteriochrome and its combination delivers a varied light-sensitive response. Besides coordination among cyanobacteriochromes in cell signaling reduces the engineering of photoreceptors for the optogenetic system.