Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Non-neuromodulatory Optogenetic Tools in Zebrafish.

blue cyan green red BLUF domains Cobalamin-binding domains Cryptochromes Fluorescent proteins LOV domains Phytochromes Review
Front Cell Dev Biol, 3 Jun 2020 DOI: 10.3389/fcell.2020.00418 Link to full text
Abstract: The zebrafish (Danio rerio) is a popular vertebrate model organism to investigate molecular mechanisms driving development and disease. Due to its transparency at embryonic and larval stages, investigations in the living organism are possible with subcellular resolution using intravital microscopy. The beneficial optical characteristics of zebrafish not only allow for passive observation, but also active manipulation of proteins and cells by light using optogenetic tools. Initially, photosensitive ion channels have been applied for neurobiological studies in zebrafish to dissect complex behaviors on a cellular level. More recently, exciting non-neural optogenetic tools have been established to control gene expression or protein localization and activity, allowing for unprecedented non-invasive and precise manipulation of various aspects of cellular physiology. Zebrafish will likely be a vertebrate model organism at the forefront of in vivo application of non-neural optogenetic tools and pioneering work has already been performed. In this review, we provide an overview of non-neuromodulatory optogenetic tools successfully applied in zebrafish to control gene expression, protein localization, cell signaling, migration and cell ablation.
2.

Green-Light-Induced Inactivation of Receptor Signaling Using Cobalamin-Binding Domains.

green MxCBD TtCBD HEK293 zebrafish in vivo Signaling cascade control Developmental processes
Angew Chem Int Ed Engl, 20 Mar 2017 DOI: 10.1002/anie.201611998 Link to full text
Abstract: Optogenetics and photopharmacology provide spatiotemporally precise control over protein interactions and protein function in cells and animals. Optogenetic methods that are sensitive to green light and can be used to break protein complexes are not broadly available but would enable multichromatic experiments with previously inaccessible biological targets. Herein, we repurposed cobalamin (vitamin B12) binding domains of bacterial CarH transcription factors for green-light-induced receptor dissociation. In cultured cells, we observed oligomerization-induced cell signaling for the fibroblast growth factor receptor 1 fused to cobalamin-binding domains in the dark that was rapidly eliminated upon illumination. In zebrafish embryos expressing fusion receptors, green light endowed control over aberrant fibroblast growth factor signaling during development. Green-light-induced domain dissociation and light-inactivated receptors will critically expand the optogenetic toolbox for control of biological processes.
Submit a new publication to our database