Phase transition of spindle pole localized protein orchestrates nuclear organization at mitotic exit.
Abstract:
Animal cells dismantle their nuclear envelope (NE) at the beginning and reconstruct it at the end of mitosis. This process is closely coordinated with spindle pole organization: poles enlarge at mitotic onset and reduce size as mitosis concludes. The significance of this coordination remains unknown. Here, we demonstrate that Aurora A maintains a pole-localized protein NuMA in a dynamic state during anaphase. Without Aurora A, NuMA shifts from a dynamic to a solid phase, abnormally accumulating at the poles, leading to chromosome bending and misshaped nuclei formation around poles. NuMA localization relies on interactions with dynein/dynactin, its coiled-coil domain, and intrinsically disordered region (IDR). Mutagenesis experiments revealed that cation-π interactions within IDR are key for NuMA localization, while glutamine residues trigger its solid-state transition upon Aurora A inhibition. This study emphasizes the role of the physical properties of spindle poles in organizing the nucleus and genome post-mitosis.