Showing 1 - 3 of 3 results
1.
Optogenetic actin network assembly on lipid bilayer uncovers the network density-dependent functions of actin-binding proteins.
Abstract:
The actin cytoskeleton forms a mesh-like network that drives cellular deformations. The network property is defined by the network density and the species of the actin-binding proteins. However, the relationship between the actin network density, the penetration ability of actin-binding proteins into the network, and resulting network dynamics remains elusive. Here, we report an in vitro optogenetic system, named OptoVCA, which induces Arp2/3-mediated actin network assembly on a lipid membrane. By changing the illumination power, duration, and pattern, the OptoVCA flexibly manipulates the density, thickness, and shape of the actin network. Taking these advantages, we examine the effects of the network density on the two representative actin-binding proteins, myosin and ADF/cofilin. We find that the penetration of myosin filaments into the network is strictly inhibited by only a several-fold increase in network density due to the steric hindrance. Furthermore, penetrated myosin filaments induce directional actin flow when the network has a density gradient. On the other hand, ADF/cofilin penetrates into the network regardless of network density, however, network disassembly is dramatically inhibited by only a several-fold increase in network density. Thus, the OptoVCA contributes to understanding cell mechanics through the examination of the network density-dependent effect on the actin-binding proteins.
2.
Optogenetic relaxation of actomyosin contractility uncovers mechanistic roles of cortical tension during cytokinesis.
-
Yamamoto, K
-
Miura, H
-
Ishida, M
-
Mii, Y
-
Kinoshita, N
-
Takada, S
-
Ueno, N
-
Sawai, S
-
Kondo, Y
-
Aoki, K
Abstract:
Actomyosin contractility generated cooperatively by nonmuscle myosin II and actin filaments plays essential roles in a wide range of biological processes, such as cell motility, cytokinesis, and tissue morphogenesis. However, subcellular dynamics of actomyosin contractility underlying such processes remains elusive. Here, we demonstrate an optogenetic method to induce relaxation of actomyosin contractility at the subcellular level. The system, named OptoMYPT, combines a protein phosphatase 1c (PP1c)-binding domain of MYPT1 with an optogenetic dimerizer, so that it allows light-dependent recruitment of endogenous PP1c to the plasma membrane. Blue-light illumination is sufficient to induce dephosphorylation of myosin regulatory light chains and a decrease in actomyosin contractile force in mammalian cells and Xenopus embryos. The OptoMYPT system is further employed to understand the mechanics of actomyosin-based cortical tension and contractile ring tension during cytokinesis. We find that the relaxation of cortical tension at both poles by OptoMYPT accelerated the furrow ingression rate, revealing that the cortical tension substantially antagonizes constriction of the cleavage furrow. Based on these results, the OptoMYPT system provides opportunities to understand cellular and tissue mechanics.
3.
Improvement of Phycocyanobilin Synthesis for Genetically Encoded Phytochrome-Based Optogenetics.
Abstract:
Optogenetics is a powerful technique using photoresponsive proteins, and the light-inducible dimerization (LID) system, an optogenetic tool, allows to manipulate intracellular signaling pathways. One of the red/far-red responsive LID systems, phytochrome B (PhyB)-phytochrome interacting factor (PIF), has a unique property of controlling both association and dissociation by light on the second time scale, but PhyB requires a linear tetrapyrrole chromophore such as phycocyanobilin (PCB), and such chromophores are present only in higher plants and cyanobacteria. Here, we report that we further improved our previously developed PCB synthesis system (SynPCB) and successfully established a stable cell line containing a genetically encoded PhyB-PIF LID system. First, four genes responsible for PCB synthesis, namely, PcyA, HO1, Fd, and Fnr, were replaced with their counterparts derived from thermophilic cyanobacteria. Second, Fnr was truncated, followed by fusion with Fd to generate a chimeric protein, tFnr-Fd. Third, these genes were concatenated with P2A peptide cDNAs for polycistronic expression, resulting in an approximately 4-fold increase in PCB synthesis compared with the previous version. Finally, we incorporated the PhyB, PIF, and SynPCB system into drug inducible lentiviral and transposon vectors, which enabled us to induce PCB synthesis and the PhyB-PIF LID system by doxycycline treatment. These tools provide a new opportunity to advance our understanding of the causal relationship between intracellular signaling and cellular functions.