1.
A glucose-blue light AND gate-controlled chemi-optogenetic cell-implanted therapy for treating type-1 diabetes in mice.
Abstract:
Exogenous insulin therapy is the mainstay treatment for Type-1 diabetes (T1D) caused by insulin deficiency. A fine-tuned insulin supply system is important to maintain the glucose homeostasis. In this study, we present a designed cell system that produces insulin under an AND gate control, which is triggered only in the presence of both high glucose and blue light illumination. The glucose-sensitive GIP promoter induces the expression of GI-Gal4 protein, which forms a complex with LOV-VP16 in the presence of blue light. The GI-Gal4:LOV-VP16 complex then promotes the expression of UAS-promoter-driven insulin. We transfected these components into HEK293T cells, and demonstrated the insulin was secreted under the AND gate control. Furthermore, we showed the capacity of the engineered cells to improve the blood glucose homeostasis through implantation subcutaneously into Type-1 diabetes mice.
2.
Accurate manipulation of optogenetic proteins with wavelength tunable femtosecond laser system.
-
Ji, W
-
Wang, S
-
Zhao, J
-
Tian, Y
-
Pan, H
-
Zheng, B
-
Yang, M
-
Tian, H
-
Hu, M
-
Wang, H
-
Chang, J
Abstract:
Photoactivated proteins controlled by optogenetic tools have broad application prospects in cell biology, neuroscience, and brain science. However, due to the narrow excitation wavelength width and the inflexibility of spatiotemporal operations, conventional sources such as visible light severely limit the further application of optogenetics. In this work, a femtosecond laser-operated system based on the optogenetic application was designed to address these limitations. The interaction between the photoreceptor and its partner protein can be triggered by a wavelength-tunable femtosecond laser. The results indicated that this process can be used to accurately manipulate optogenetic proteins in cells, which met spectral flexibility (700–1040 nm) and operational flexibility in time and space (a single cell to multiple cells). To demonstrate the practical applications of this process, the apoptotic signaling pathway of cancer cells was taken as an example. We believe that this wavelength-tunable femtosecond laser system will promote the development of optogenetics, making optics and even physics more powerful tools in biology.