Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 10 of 10 results
1.

Sequential delivery of photosensitizers and checkpoint inhibitors by engineered bacteria for enhanced cancer photodynamic immunotherapy.

green CcaS/CcaR E. coli Transgene expression
Biotechnol Bioeng, 13 Aug 2024 DOI: 10.1002/bit.28829 Link to full text
Abstract: Engineered bacteria-based cancer therapy has increasingly been considered to be a promising therapeutic strategy due to the development of synthetic biology. Wherein, engineering bacteria-mediated photodynamic therapy (PDT)-immunotherapy shows greater advantages and potential in treatment efficiency than monotherapy. However, the unsustainable regeneration of photosensitizers (PSs) and weak immune responses limit the therapeutic efficiency. Herein, we developed an engineered bacteria-based delivery system for sequential delivery of PSs and checkpoint inhibitors in cancer PDT-immunotherapy. The biosynthetic pathway of 5-aminolevulinic acid (5-ALA) was introduced into Escherichia coli, yielding a supernatant concentration of 172.19 mg/L after 10 h of growth. And another strain was endowed with the light-controllable releasement of anti-programmed cell death-ligand 1 nanobodies (anti-PD-L1). This system exhibited a collaborative effect, where PDT initiated tumor cell death and the released tumor cell fragments stimulated immunity, followed by the elimination of residual tumor cells. The tumor inhibition rate reached 74.97%, and the portion of activated T cells and inflammatory cytokines were reinforced. The results demonstrated that the engineered bacteria-based collaborative system could sequentially deliver therapeutic substance and checkpoint inhibitors, and achieve good therapeutic therapy. This paper will provide a new perspective for the cancer PDT-immunotherapy.
2.

A red light-controlled probiotic bio-system for in-situ gut-brain axis regulation.

red Cph1 E. coli Transgene expression Cell death
Biomaterials, 20 Jan 2023 DOI: 10.1016/j.biomaterials.2023.122005 Link to full text
Abstract: Microbes regulate brain function through the gut-brain axis, deriving the technology to modulate the gut-brain axis in situ by engineered probiotics. Optogenetics offers precise and flexible strategies for controlling the functions of probiotics in situ. However, the poor penetration of most frequently used short wavelength light has limited the application of optogenetic probiotics in the gut. Herein, a red-light optogenetic gut probiotic was applied for drug production and delivery and regulation of the host behaviors. Firstly, a Red-light Optogenetic E. coli Nissle 1917 strain (ROEN) that could respond to red light and release drug product by light-controlled lysis was constructed. The remaining optical power of red light after 3 cm tissue was still able to initiate gene expression of ROEN and produce about approximately 3-fold induction efficiency. To give full play to the in vivo potential of ROEN, its responsive ability of the penetrated red light was tested, and its encapsulation was realized by PH-sensitive alginate microcapsules for further oral administration. The function of ROEN for gut-brain regulation was realized by releasing Exendin-4 fused with anti-neonatal Fc receptor affibody. Neuroprotection and behavioral regulation effects were evaluated in the Parkinson's disease mouse model, after orally administration of ROEN delivering Exendin-4 under optogenetic control in the murine gut. The red-light optogenetic probiotic might be a perspective platform for in situ drug delivery and gut-brain axis regulation.
3.

A micro-nano optogenetic system based on probiotics for in situ host metabolism regulation.

blue YtvA L. lactis Transgene expression
Nano Res, 7 Dec 2022 DOI: 10.1007/s12274-022-4963-5 Link to full text
Abstract: Genetically engineered bacteria have aroused attention as micro-nano drug delivery systems in situ. However, conventional designs of engineered bacteria usually function constantly or autonomously, which might be non-specific or imprecise. Therefore, designing and optimizing in situ control strategy are important methodological progress for therapeutic researches of intestinal engineered bacteria. Here, a micro-nano optogenetic system based on probiotic was developed combining microelectronics, nanotechnology, and synthetic biology to achieve in situ controllable drug delivery. Firstly, optogenetic engineered Lactococcus lactis was orally administrated in the intestinal tract. A wearable optical device was designed to control optical signals remotely. Then, L. lactis could be customized to secrete peptides according to optical signals. As an example, optogenetic L. lactis system can be constructed to secrete glucagon-like peptide-1 (GLP-1) under the control of the wearable optical device to regulate metabolism. To improve the half-life of GLP-1 in vivo, Fc-domain fused GLP-1 was optimally used. Using this strategy, blood glucose, weight, and other features were well controlled in rats and mice models. Furthermore, upconversion microcapsules were introduced to increase the excitation wavelength of the optogenetic system for better penetrability. This strategy has biomedical potential to expand the toolbox for intestinal engineered bacteria.
4.

Hydrogel microcapsules containing engineered bacteria for sustained production and release of protein drugs.

blue EL222 E. coli Transgene expression Cell death
Biomaterials, 5 Jun 2022 DOI: 10.1016/j.biomaterials.2022.121619 Link to full text
Abstract: Subcutaneous administration of sustained-release formulations is a common strategy for protein drugs, which avoids first pass effect and has high bioavailability. However, conventional sustained-release strategies can only load a limited amount of drug, leading to insufficient durability. Herein, we developed microcapsules based on engineered bacteria for sustained release of protein drugs. Engineered bacteria were carried in microcapsules for subcutaneous administration, with a production-lysis circuit for sustained protein production and release. Administrated in diabetic rats, engineered bacteria microcapsules was observed to smoothly release Exendin-4 for 2 weeks and reduce blood glucose. In another example, by releasing subunit vaccines with bacterial microcomponents as vehicles, engineered bacterial microcapsules activated specific immunity in mice and achieved tumor prevention. The engineered bacteria microcapsules have potential to durably release protein drugs and show versatility on the size of drugs. It might be a promising design strategy for long-acting in situ drug factory.
5.

Light-Sensitive Lactococcus lactis for Microbe-Gut-Brain Axis Regulating via Upconversion Optogenetic Micro-Nano System.

blue YtvA L. lactis Transgene expression
ACS Nano, 1 Apr 2022 DOI: 10.1021/acsnano.1c11536 Link to full text
Abstract: The discovery of the gut-brain axis has proven that brain functions can be affected by the gut microbiota's metabolites, so there are significant opportunities to explore new tools to regulate gut microbiota and thus work on the brain functions. Meanwhile, engineered bacteria as oral live biotherapeutic agents to regulate the host's healthy homeostasis have attracted much attention in microbial therapy. However, whether this strategy is able to remotely regulate the host's brain function in vivo has not been investigated. Here, we engineered three blue-light-responsive probiotics as oral live biotherapeutic agents. They are spatiotemporally delivered and controlled by the upconversion optogenetic micro-nano system. This micro-nano system promotes the small intestine targeting and production of the exogenous L. lactis in the intestines, which realizes precise manipulation of brain functions including anxiety behavior, Parkinson's disease, and vagal afferent. The noninvasive and real-time probiotic intervention strategy makes the communiation from the gut to the host more controllable, which will enable the potential for engineered microbes accurately and effectively regulating a host's health.
6.

Optogenetic operated probiotics to regulate host metabolism by mimicking enteroendocrine.

blue YtvA L. lactis Transgene expression
bioRxiv, 1 Dec 2021 DOI: 10.1101/2021.11.30.470589 Link to full text
Abstract: The enteroendocrine system plays an important role in metabolism. The gut microbiome regulates enteroendocrine in an extensive way, arousing attention in biomedicine. However, conventional strategies of enteroendocrine regulation via gut microbiome are usually non-specific or imprecise. Here, an optogenetic operated probiotics system was developed combining synthetic biology and flexible electronics to achieve in situ controllable secretion to mimic enteroendocrine. Firstly, optogenetic engineered Lactococcus lactis (L. lactis) were administrated in the intestinal tract. A wearable optogenetic device was designed to control optical signals remotely. Then, L. lactis could secrete enteroendocrine hormone according to optical signals. As an example, optogenetic L. lactis could secrete glucagon-like peptide-1(GLP-1) under the control of the wearable optogenetic device. To improve the half-life of GLP-1 in vivo, the Fc domain from immunoglobulin was fused. Treated with this strategy, blood glucose, weight and other features were relatively well controlled in rats and mice models. Furthermore, up-conversion microcapsules were introduced to increase the excitation wavelength of the optogenetic system for better penetrability. This strategy has biomedical potential in metabolic diseases therapy by mimicking enteroendocrine.
7.

NIR light-responsive bacteria with live bio-glue coatings for precise colonization in the gut.

blue YtvA E. coli Signaling cascade control Transgene expression
Cell Rep, 14 Sep 2021 DOI: 10.1016/j.celrep.2021.109690 Link to full text
Abstract: Recombinant bacterial colonization plays an indispensable role in disease prevention, alleviation, and treatment. Successful application mainly depends on whether bacteria can efficiently spatiotemporally colonize the host gut. However, a primary limitation of existing methods is the lack of precise spatiotemporal regulation, resulting in uncontrolled methods that are less effective. Herein, we design upconversion microgels (UCMs) to convert near-infrared light (NIR) into blue light to activate recombinant light-responsive bacteria (Lresb) in vivo, where autocrine "functional cellular glues" made of adhesive proteins assist Lresb inefficiently colonizing the gut. The programmable engineering platform is further developed for the controlled and effective colonization of Escherichia coli Nissle 1917 (EcN) in the gut. The colonizing bacteria effectively alleviate DSS-induced colitis in mice. We anticipate that this approach could facilitate the clinical application of engineered microbial therapeutics to accurately and effectively regulate host health.
8.

Engineered NIR light-responsive bacteria as anti-tumor agent for targeted and precise cancer therapy.

blue EL222 E. coli Signaling cascade control
Lancet Infect Dis, 5 Jul 2021 DOI: 10.1016/j.cej.2021.130842 Link to full text
Abstract: Engineered anaerobic bacteria known as live biotherapeutic products (LBPs) have shown great advances in cancer therapy. One advantage of anaerobic bacteria as drug carrier is that it spontaneously target to tumor and persistently release anti-tumor factors. To realize effective anti-cancer therapeutics, one essential premise is to improve the controllability of treatment. Here, we designed near-infrared (NIR)-light responsive bacteria as anti-tumor agent, which is based on a blue-light responsive module and upconversion nanoparticles. The upconversion nanoparticles converted external NIR light to local blue light to noninvasively activate blue-light responsive module (EL222) in engineered LBPs. The activated LBPs then produce tumor necrosis factor α (TNFα) for precise tumor ablation. In vitro and in vivo results have proven that this engineered NIR-light-responsive bacteria could efficiently inhibit tumor growth. We anticipate that this controllable and safe bacteria-based therapy can facilitate the application of LBPs to accurately and effectively regulate diseases.
9.

Optotheranostic Nanosystem with Phone Visual Diagnosis and Optogenetic Microbial Therapy for Ulcerative Colitis At-Home Care.

blue YtvA E. coli Transgene expression
ACS Nano, 5 Apr 2021 DOI: 10.1021/acsnano.1c00135 Link to full text
Abstract: Ulcerative colitis (UC) is a relapsing disorder characterized by chronic inflammation of the intestinal tract. However, the home care of UC based on remote monitoring, due to the operational complexity and time-consuming procedure, restrain its widespread applications. Here we constructed an optotheranostic nanosystem for self-diagnosis and long-acting mitigations of UC at home. The system included two major modules: (i) A disease prescreening module mediated by smartphone optical sensing. (ii) Disease real-time intervention module mediated by an optogenetic engineered bacteria system. Recombinant Escherichia coli Nissle 1917 (EcN) secreted interleukin-10 (IL-10) could downregulate inflammatory cascades and matrix metalloproteinases; it is a candidate for use in the therapeutic intervention of UC. The results showed that the Detector was able to analyze, report, and share the detection results in less than 1 min, and the limit of detection was 15 ng·mL-1. Besides, the IL-10-secreting EcN treatment suppressed the intestinal inflammatory response in UC mice and protected the intestinal mucosa against injury. The optotheranostic nanosystems enabled solutions to diagnose and treat disease at home, which promotes a mobile health service development.
10.

Upconversion optogenetic micro-nanosystem optically controls the secretion of light-responsive bacteria for systemic immunity regulation.

blue YtvA E. coli L. lactis Transgene expression
Commun Biol, 9 Oct 2020 DOI: 10.1038/s42003-020-01287-4 Link to full text
Abstract: Chemical molecules specifically secreted into the blood and targeted tissues by intestinal microbiota can effectively affect the associated functions of the intestine especially immunity, representing a new strategy for immune-related diseases. However, proper ways of regulating the secretion metabolism of specific strains still remain to be established. In this article, an upconversion optogenetic micro-nanosystem was constructed to effectively regulate the specific secretion of engineered bacteria. The system included two major modules: (i) Modification of secretory light-responsive engineered bacteria. (ii) Optical sensing mediated by upconversion optogenetic micro-nanosystem. This system could regulate the efficient secretion of immune factors by engineered bacteria through optical manipulation. Inflammatory bowel disease and subcutaneously transplanted tumors were selected to verify the effectiveness of the system. Our results showed that the endogenous factor TGF-β1 could be controllably secreted to suppress the intestinal inflammatory response. Additionally, regulatory secretion of IFN-γ was promoted to slow the progression of B16F10 tumor.
Submit a new publication to our database