Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Light-Induced GFP Expression in Zebrafish Embryos using the Optogenetic TAEL/C120 System.

blue EL222 zebrafish in vivo
J Vis Exp, 19 Aug 2021 DOI: 10.3791/62818 Link to full text
Abstract: Inducible gene expression systems are an invaluable tool for studying biological processes. Optogenetic expression systems can provide precise control over gene expression timing, location, and amplitude using light as the inducing agent. In this protocol, an optogenetic expression system is used to achieve light-inducible gene expression in zebrafish embryos. This system relies on an engineered transcription factor called TAEL based on a naturally occurring light-activated transcription factor from the bacterium E. litoralis. When illuminated with blue light, TAEL dimerizes, binds to its cognate regulatory element called C120, and activates transcription. This protocol uses transgenic zebrafish embryos that express the TAEL transcription factor under the control of the ubiquitous ubb promoter. At the same time, the C120 regulatory element drives the expression of a fluorescent reporter gene (GFP). Using a simple LED panel to deliver activating blue light, induction of GFP expression can first be detected after 30 min of illumination and reaches a peak of more than 130-fold induction after 3 h of light treatment. Expression induction can be assessed by quantitative real-time PCR (qRT-PCR) and by fluorescence microscopy. This method is a versatile and easy-to-use approach for optogenetic gene expression.
2.

TAEL 2.0: An Improved Optogenetic Expression System for Zebrafish.

blue EL222 zebrafish in vivo Transgene expression
Zebrafish, 8 Feb 2021 DOI: 10.1089/zeb.2020.1951 Link to full text
Abstract: Inducible gene expression systems are valuable tools for studying biological processes. We previously developed an optogenetic gene expression system called TAEL that is optimized for use in zebrafish. When illuminated with blue light, TAEL transcription factors dimerize and activate gene expression downstream of the TAEL-responsive C120 promoter. By using light as the inducing agent, the TAEL/C120 system overcomes limitations of traditional inducible expression systems by enabling fine spatial and temporal regulation of gene expression. In this study, we describe ongoing efforts to improve the TAEL/C120 system. We made modifications to both the TAEL transcriptional activator and the C120 regulatory element, collectively referred to as TAEL 2.0. We demonstrate that TAEL 2.0 consistently induces higher levels of reporter gene expression and at a faster rate, but with comparable background and toxicity as the original TAEL system. With these improvements, we were able to create functional stable transgenic lines to express the TAEL 2.0 transcription factor either ubiquitously or with a tissue-specific promoter. We demonstrate that the ubiquitous line in particular can be used to induce expression at late embryonic and larval stages, addressing a major deficiency of the original TAEL system. This improved optogenetic expression system will be a broadly useful resource for the zebrafish community.
Submit a new publication to our database