Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Showing 1 - 2 of 2 results
1.

Assays to measure small molecule Hsp70 agonist activity in vitro and in vivo.

blue CRY2olig HEK293 Organelle manipulation
Anal Biochem, 9 Nov 2024 DOI: 10.1016/j.ab.2024.115712 Link to full text
Abstract: Hsp70 prevents protein aggregation and is cytoprotective, but sustained Hsp70 overexpression is problematic. Therefore, we characterized small molecule agonists that augment Hsp70 activity. Because cumbersome assays were required to assay agonists, we developed cell-based and in vivo assays in which disease-associated consequences of Hsp70 activation can be quantified. One assay uses an optogenetic system in which the formation of TDP-43 inclusions can be controlled, and the second assay employs a zebrafish model for acute kidney injury (AKI). These complementary assays will facilitate future work to identify new Hsp70 agonists as well as optimized agonist derivatives.
2.

RNA Binding Antagonizes Neurotoxic Phase Transitions of TDP-43.

blue CRY2/CRY2 CRY2olig HEK293 ReNcell VM Organelle manipulation
Neuron, 27 Feb 2019 DOI: 10.1016/j.neuron.2019.01.048 Link to full text
Abstract: TDP-43 proteinopathy is a pathological hallmark of amyotrophic lateral sclerosis and frontotemporal dementia where cytoplasmic TDP-43 inclusions are observed within degenerating regions of patient postmortem tissue. The mechanism by which TDP-43 aggregates has remained elusive due to technological limitations, which prevent the analysis of specific TDP-43 interactions in live cells. We present an optogenetic approach to reliably induce TDP-43 proteinopathy under spatiotemporal control. We show that the formation of pathologically relevant inclusions is driven by aberrant interactions between low-complexity domains of TDP-43 that are antagonized by RNA binding. Although stress granules are hypothesized to be a conduit for seeding TDP-43 proteinopathy, we demonstrate pathological inclusions outside these RNA-rich structures. Furthermore, we show that aberrant phase transitions of cytoplasmic TDP-43 are neurotoxic and that treatment with oligonucleotides composed of TDP-43 target sequences prevent inclusions and rescue neurotoxicity. Collectively, these studies provide insight into the mechanisms that underlie TDP-43 proteinopathy and present a potential avenue for therapeutic intervention.
Submit a new publication to our database