Showing 1 - 3 of 3 results
1.
Optogenetic induction of chronic glucocorticoid exposure in early-life leads to blunted stress-response in larval zebrafish.
Abstract:
Early life stress (ELS) exposure alters stress susceptibility in later life and affects vulnerability to stress-related disorders, but how ELS changes the long-lasting responsiveness of the stress system is not well understood. Zebrafish provides an opportunity to study conserved mechanisms underlying the development and function of the stress response that is regulated largely by the neuroendocrine hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis, with glucocorticoids (GC) as the final effector. In this study, we established a method to chronically elevate endogenous GC levels during early life in larval zebrafish. To this end, we employed an optogenetic actuator, beggiatoa photoactivated adenylyl cyclase, specifically expressed in the interrenal cells of zebrafish and demonstrate that its chronic activation leads to hypercortisolaemia and dampens the acute-stress evoked cortisol levels, across a variety of stressor modalities during early life. This blunting of stress-response was conserved in ontogeny at a later developmental stage. Furthermore, we observe a strong reduction of proopiomelanocortin (pomc)-expression in the pituitary as well as upregulation of fkbp5 gene expression. Going forward, we propose that this model can be leveraged to tease apart the mechanisms underlying developmental programming of the HPA/I axis by early-life GC exposure and its implications for vulnerability and resilience to stress in adulthood.
2.
Optogenetic tools for manipulation of cyclic nucleotides, functionally coupled to CNG-channels.
-
Henß, T
-
Nagpal, J
-
Gao, S
-
Scheib, U
-
Pieragnolo, A
-
Hirschhäuser, A
-
Schneider-Warme, F
-
Hegemann, P
-
Nagel, G
-
Gottschalk, A
Abstract:
The cyclic nucleotides cAMP and cGMP are ubiquitous second messengers that regulate numerous biological processes. Malfunctional cNMP signalling is linked to multiple diseases and thus is an important target in pharmaceutical research. The existing optogenetic toolbox in C. elegans is restricted to soluble adenylyl cyclases, the membrane-bound Blastocladiella emersonii CyclOp and hyperpolarising rhodopsins, yet missing are membrane-bound photoactivatable adenylyl cyclases and hyperpolarisers based on K+ -currents.
3.
Using a Robust and Sensitive GFP-Based cGMP Sensor for Real Time Imaging in Intact Caenorhabditis elegans.
-
Woldemariam, S
-
Nagpal, J
-
Hill, T
-
Li, J
-
Schneider, MW
-
Shankar, R
-
Futey, M
-
Varshney, A
-
Ali, N
-
Mitchell, J
-
Andersen, K
-
Barsi-Rhyne, B
-
Tran, A
-
Costa, WS
-
Krzyzanowski, MC
-
Yu, YV
-
Brueggemann, C
-
Hamilton, OS
-
Ferkey, DM
-
VanHoven, M
-
Sengupta, P
-
Gottschalk, A
-
L'Etoile, N
Abstract:
cGMP plays a role in sensory signaling and plasticity by regulating ion channels, phosphodiesterases and kinases. Studies that primarily used genetic and biochemical tools suggest that cGMP is spatiotemporally regulated in multiple sensory modalities. FRET- and GFP-based cGMP sensors were developed to visualize cGMP in primary cell culture and Caenorhabditis elegans to corroborate these findings. While a FRET-based sensor has been used in an intact animal to visualize cGMP, the requirement of a multiple emission system limits its ability to be used on its own as well as with other fluorophores. Here, we demonstrate that a C. elegans codon-optimized version of the cpEGFP-based cGMP sensor FlincG3 can be used to visualize rapidly changing cGMP levels in living, behaving C. elegans We coexpressed FlincG3 with the blue light-activated guanylyl cyclases BeCyclOp and bPGC in body wall muscles and found that the rate of change in FlincG3 fluorescence correlated with the rate of cGMP production by each cyclase. Furthermore, we show that FlincG3 responds to cultivation temperature, NaCl concentration changes and sodium dodecyl sulfate in the sensory neurons AFD, ASEL/R and PHB, respectively. Intriguingly, FlincG3 fluorescence in ASEL and ASER decreased in response to a NaCl concentration upstep and downstep, respectively, which is opposite in sign to the coexpressed calcium sensor jRGECO1a and previously published calcium recordings. These results illustrate that FlincG3 can be used to report rapidly changing cGMP levels in an intact animal and that the reporter can potentially reveal unexpected spatiotemporal landscapes of cGMP in response to stimuli.