Curated Optogenetic Publication Database

Search precisely and efficiently by using the advantage of the hand-assigned publication tags that allow you to search for papers involving a specific trait, e.g. a particular optogenetic switch or a host organism.

Qr: author:"Jason M Haugh"
Showing 1 - 2 of 2 results
1.

Optogenetic control of PLC-γ1 activity polarizes cell motility.

blue iLID isolated MEFs Signaling cascade control Control of cytoskeleton / cell motility / cell shape
bioRxiv, 11 Oct 2025 DOI: 10.1101/2025.10.09.681531 Link to full text
Abstract: Phospholipase C-γ1 (PLC-γ1) signaling is required for mesenchymal chemotaxis, but is it sufficient to bias motility? PLC-γ1 enzyme activity is basally autoinhibited, and light-controlled membrane recruitment of wild-type (WT) PLC-γ1 (OptoPLC-γ1) in Plcg1-null fibroblasts does not trigger lipid hydrolysis, complicating efforts to isolate its contribution. Utilizing cancer-associated mutations to investigate the regulatory logic of PLC-γ1, we demonstrate that the canonical hallmark of enzyme activity, phosphorylated Tyr783 (pTyr783), is not a proxy for activity level, but is rather a marker of dysregulated autoinhibition. Accordingly, OptoPLC-γ1 with a deregulating mutation (P867R, S345F, or D1165H) exhibits elevated phosphorylation, and membrane localization of such is sufficient to activate substrate hydrolysis and concomitant motility responses. In particular, local recruitment of OptoPLC-γ1 S345F polarizes cell motility on demand. This response is spatially dose-sensitive and only partially reduced by blocking canonical PLC-γ1 signaling yet is lipase-dependent. Our findings reframe the interpretation of PLC-γ1 regulation and demonstrate that local activation of PLC-γ1 is sufficient to direct cell motility.
2.

CD44 and Ezrin restrict EGF receptor mobility to generate a novel spatial arrangement of cytoskeletal signaling modules driving bleb-based migration.

blue AsLOV2 CRY2/CRY2 A-375 Signaling cascade control Control of cytoskeleton / cell motility / cell shape
bioRxiv, 1 Jan 2025 DOI: 10.1101/2024.12.31.630838 Link to full text
Abstract: Cells under high confinement form highly polarized hydrostatic pressure-driven, stable leader blebs that enable efficient migration in low adhesion, environments. Here we investigated the basis of the polarized bleb morphology of metastatic melanoma cells migrating in non-adhesive confinement. Using high-resolution time-lapse imaging and specific molecular perturbations, we found that EGF signaling via PI3K stabilizes and maintains a polarized leader bleb. Protein activity biosensors revealed a unique EGFR/PI3K activity gradient decreasing from rear-to-front, promoting PIP3 and Rac1-GTP accumulation at the bleb rear, with its antagonists PIP2 and RhoA-GTP concentrated at the bleb tip, opposite to the front-to-rear organization of these signaling modules in integrin-mediated mesenchymal migration. Optogenetic experiments showed that disrupting this gradient caused bleb retraction, underscoring the role of this signaling gradient in bleb stability. Mathematical modeling and experiments identified a mechanism where, as the bleb initiates, CD44 and ERM proteins restrict EGFR mobility in a membrane-apposed cortical actin meshwork in the bleb rear, establishing a rear-to-front EGFR-PI3K-Rac activity gradient. Thus, our study reveals the biophysical and molecular underpinnings of cell polarity in bleb-based migration of metastatic cells in non-adhesive confinement, and underscores how alternative spatial arrangements of migration signaling modules can mediate different migration modes according to the local microenvironment.
Submit a new publication to our database